Using artificial intelligence in sn analysis: building models to understand and predict user behavior

Authors

  • Natalia O. Yarets’ka Department of Higher Mathematics and Computer Applications, Khmelnytskyi National University, Ukraine
  • Liudmyla V. Borovyk Department of General Scientific and Engineering Disciplines, Bohdan Khmelnytskyi National Academy of the State Border Guard Service of Ukraine, Ukraine
  • Lilia М. Traskovetska Department of General Scientific and Engineering Disciplines, Bohdan Khmelnytskyi National Academy of the State Border Guard Service of Ukraine, Ukraine
  • Andriy O. Ramskyi Department of Higher Mathematics and Computer Applications, Khmelnytskyi National University, Ukraine
  • Olena A. Poplavskaya Department of Higher Mathematics and Computer Applications, Khmelnytskyi National University, Ukraine

Keywords:

Big data analysis, Machine learning in SNs, Prediction of user activity, Classification algorithms, Detection of behavior patterns

Abstract

Introduction: The study explores the use of artificial intelligence (AI) and sentiment analysis to predict personality traits and behaviors from the extensive data available on social networks. It aims to understand the dynamics of user interaction and the spread of viral content through AI-driven models.

Methods: The research applies various AI and machine learning techniques, particularly focusing on natural language processing (NLP), to analyze social media data. The methodology includes sentiment analysis to categorize text into distinct emotional responses and predictive analytics to forecast trends in user engagement and content virality.

Results: Results indicate that AI can effectively predict user behaviors and personality traits such as neuroticism, which correlates with higher aggression and more frequent, prolonged use of social media. The study identifies key patterns and trends that influence user interactions on social networks.

Discussion: The discussion centers on the implications of AI in social media analytics, addressing both the technological advancements and the ethical considerations of profiling user behavior. It emphasizes the need for robust models that can handle the complexity and variability of data in social networks.

Conclusion: The research demonstrates that AI and machine learning are invaluable tools for analyzing social networks, providing insights that can enhance user engagement strategies and content delivery. The study advocates for continued development and refinement of AI models to better understand and predict user behavior.

References

Abbas, M., Memon, K. A., Jamali, A. A., Memon, S., & Ahmed, A. (2019). Multinomial Naive Bayes classification model for sentiment analysis. IJCSNS International Journal of Computer Science and Network Security, 19(3), 62. DOI:10.13140/RG.2.2.30021.40169

AlBaik, M., & Al-Azhari, W. (2021). The social and the impact of COVID-19 on social behavior in streets of Amman, Jordan. Planning, 16(5), 903-913. DOI:10.18280/ijsdp.160511

Azucar, D., Marengo, D., & Settanni, M. (2018). Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis. Personality and Individual Differences, 124, 150-159. DOI:10.1016/j.paid.2017.12.018

Başaran, S., & Ejimogu, O. H. (2021). A neural network approach for predicting personality from Facebook data. Sage Open, 11(3), 21582440211032156. DOI:10.1177/21582440211032156

Bayer, J. B., Triệu, P., & Ellison, N. B. (2020). Social media elements, ecologies, and effects. Annual Review of Psychology, 71, 471-497. DOI:10.1146/annurev-psych-010419-050944

Bhattacharya, P., Phan, T. Q., Bai, X., & Airoldi, E. M. (2019). A coevolution model of network structure and user behavior: The case of content generation in online SNs. Information Systems Research, 30(1), 117-132. DOI:10.1287/isre.2018.0790

Bowden-Green, T., Hinds, J., & Joinson, A. (2021). Understanding neuroticism and social media: A systematic review. Personality and Individual Differences, 168, 110344. DOI: 10.1016/j.paid.2020.110344

Bunker, C. J., & Kwan, V. S. (2021). Do the offline and social media Big Five have the same dimensional structure, mean levels, and predictive validity of social media outcomes? Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 15(4). DOI:10.5817/CP2021-4-8

Carvalho, J., & Plastino, A. (2021). On the evaluation and combination of state-of-the-art features in Twitter sentiment analysis. Artificial Intelligence Review, 54, 1887-1936. DOI:10.1007/s10462-020-09895-6

Cheng, C., Wang, H.-y., Sigerson, L., & Chau, C.-l. (2019). Do the socially rich get richer? A nuanced perspective on SN site use and online social capital accrual. Psychological Bulletin, 145(7), 734. DOI:10.1037/bul0000198

Colombo, J., Akhter, T., Wanke, P., Azad, M., Tan, Y., Edalatpanah, S., & Antunes, J. (2023). Interplay of cryptocurrencies with financial and social media indicators: An entropy-weighted neural-MADM approach. Journal of Operational and Strategic Analytics, 1(4), 160-172. DOI:10.56578/josa01040

Dey, A. K., Alam, A. S., Alam, M. G. R., & Zaman, S. (2022). Implementation of Explainable AI in Mental Health Informatics: Suicide Data of the United Kingdom. Paper presented at the 2022 12th International Conference on Electrical and Computer Engineering (ICECE). DOI:10.1109/ICECE57408.2022.10088765

Di Martino, F., & Delmastro, F. (2023). Explainable AI for clinical and remote health applications: a survey on tabular and time series data. Artificial Intelligence Review, 56(6), 5261-5315. DOI:10.1007/s10462-022-10304-3

Durmishi, L., & Durmishi, A. (2022). A philosophical assessment of SNs impact on adolescents’ development in conditions of unlimited access to information. Futurity Philosophy, 1(2), 27-41. DOI:10.57125/FP.2022.06.30.03

Essien, A., Petrounias, I., Sampaio, P., & Sampaio, S. (2021). A deep-learning model for urban traffic flow prediction with traffic events mined from twitter. World Wide Web, 24(4), 1345-1368. DOI:10.1007/s11280-020-00800-3

Gao, Y., Wang, X., He, X., Feng, H., & Zhang, Y. (2023). Rumor detection with self-supervised learning on texts and social graph. Frontiers of Computer Science, 17(4), 174611. DOI: 10.1007/s11704-022-1531

Gerlich, M., Elsayed, W., & Sokolovskiy, K. (2023). Artificial intelligence as toolset for analysis of public opinion and social interaction in marketing: identification of micro and nano influencers. Frontiers in Communication, 8, 1075654. DOI:10.3389/fcomm.2023.1075654

Haghani, S., & Keyvanpour, M. R. (2019). A systemic analysis of link prediction in SN. Artificial Intelligence Review, 52, 1961-1995. DOI:10.1007/s10462-017-9590

Hourrane, O., & Idrissi, N. (2019). Sentiment classification on movie reviews and twitter: an experimental study of supervised learning models. Paper presented at the 2019 1st International Conference on Smart Systems and Data Science (ICSSD). https://www.academia.edu/79670648/Sentiment_Classification_on_Movie_Reviews_and_Twitter_An_Experimental_Study_of_Supervised_Learning_Models

Huguet Benavent, D., & Gandía Cabedo, J. L. (2021). Textual Analysis and Sentiment Analysis in Accounting. Revista de Contabilidad - Spanish Accounting Review, 24(2), 168–183. DOI:10.6018/rcsar.386541

Imran, M., Ofli, F., Caragea, D., & Torralba, A. (2020). Using AI and social media multimodal content for disaster response and management. Opportunities, challenges, and future directions (Vol. 57, pp. 102261): Elsevier. DOI:10.1016/j.ipm.2020.10226

Kaushik, K., Bhardwaj, A., Dahiya, S., Maashi, M. S., Al Moteri, M., Aljebreen, M., & Bharany, S. (2022). Multinomial naive bayesian classifier framework for systematic analysis of smart iot devices. Sensors, 22(19), 7318. DOI:10.3390/s22197318

Kolinets, L. (2023). International financial markets of the future: technological innovations and their impact on the global financial system. Futurity of Social Sciences, 1(3), 4-19. DOI:10.57125/FS.2023.09.20.01

Kumar, R., Ojha, A. K., Malmasi, S., & Zampieri, M. (2020). Evaluating aggression identification in social media. Paper presented at the Proceedings of the second workshop on trolling, aggression and cyberbullying. https://aclanthology.org/2020.trac-1.

Ligthart, A., Catal, C., & Tekinerdogan, B. (2021). Systematic reviews in sentiment analysis: a tertiary study. Artificial Intelligence Review, 1-57. DOI:10.1007/s10462-021-09973-3

Liu, Y., Yang, H., Sun, G., & Bin, S. (2020). Collaborative Filtering recommendation algorithm based on multi-relationship SN. Ingénierie des Systèmes d'Information, 25(3). DOI:10.1016/j.aej.2021.04.081

Liu, Z., & Song, T. (2024). Big data analysis and user behavior prediction of SNs based on artificial neural network. CIT. Journal of Computing and Information Technology, 31(3), 185-201. DOI:10.20532/cit.2023.100575

Marengo, D., & Montag, C. (2020). Digital phenotyping of big five personality via facebook data mining: a meta-analysis. Digital Psychology, 1(1), 52-64. DOI:10.24989/dp.v1i1.1823

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6), 1-35. DOI:10.1145/3457607

Meng, W., Mao, C., Zhang, J., Wen, J., & Wu, D. (2019). A fast recognition algorithm of online SN images based on deep learning. Traitement du Signal, 36(6). DOI: 10.18280/ts.360613

Pandey, B., Bhanodia, P. K., Khamparia, A., & Pandey, D. K. (2019). A comprehensive survey of edge prediction in SNs: Techniques, parameters and challenges. Expert Systems with Applications, 124, 164-181. DOI:10.1016/j.eswa.2019.01.040

Panfilova, A. S., & Turdakov, D. Y. (2024). Applying explainable artificial intelligence methods to models for diagnosing personal traits and cognitive abilities by SN data. Scientific Reports, 14(1), 5369. DOI:10.1038/s41598-024-56080-8

Pawełoszek, I., Kumar, N., & Solanki, U. (2022). Artificial intelligence, digital technologies and the future of law. Futurity Economics & Law, 2(2), 24-33. DOI: 10.57125/FEL.2022.06.25.03

Riadi, I., & Rafiq, I. A. (2022). Forensic mobile analysis on social media using national institute standard of technology method. International Journal of Safety & Security Engineering, 12(6). DOI:10.18280/ijsse.120606

Rosa, R. L., De Silva, M. J., Silva, D. H., Ayub, M. S., Carrillo, D., Nardelli, P. H., & Rodriguez, D. Z. (2020). Event detection system based on user behavior changes in online SNs: Case of the covid-19 pandemic. IEEE Access, 8, 158806-158825. DOI:10.1109/ACCESS.2020.3020391

Sadiq, S., Mehmood, A., Ullah, S., Ahmad, M., Choi, G. S., & On, B.-W. (2021). Aggression detection through deep neural model on twitter. Future Generation Computer Systems, 114, 120-129. DOI:10.1016/j.future.2020.07.050

Salsabila, G. D., & Setiawan, E. B. (2021). Semantic approach for big five personality prediction on twitter. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(4), 680-687. DOI:10.29207/resti.v5i4.3197

Shahbaznezhad, H., Dolan, R., & Rashidirad, M. (2021). The role of social media content format and platform in users’ engagement behavior. Journal of Interactive Marketing, 53(1), 47-65. DOI:10.1016/j.intmar.2020.05.001

Sharma, S., & Jain, A. (2023). Hybrid ensemble learning with feature selection for sentiment classification in social media Research Anthology on Applying SNing Strategies to Classrooms and Libraries (pp. 1183-1203). IGI Global. DOI:10.4018/IJIRR.2020040103

Sheikhi, S. (2020). An efficient method for detection of fake accounts on the instagram platform. Revue d'Intelligence Artificielle, 34(4). DOI:10.18280/ria.340407

Shetty, S. D. (2021). Sentiment analysis, tweet analysis and visualization on big data using Apache Spark and Hadoop. Paper presented at the IOP Conference Series: Materials Science and Engineering. DOI:10.1088/1757-899X/1099/1/012002

Shu, K., Bhattacharjee, A., Alatawi, F., Nazer, T. H., Ding, K., Karami, M., & Liu, H. (2020). Combating disinformation in a social media age. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(6), e1385. DOI:10.1002/widm.1385

Sofilkanych, N., Vesova, O., Kaminskyy, V., & Kryvosheieva, A. (2023). The impact of artificial intelligence on Ukrainian medicine: benefits and challenges for the future. Futurity Medicine, 2(4), 28-39. DOI: 10.57125/FEM.2023.12.30.04

Vaid, S. S., & Harari, G. M. (2021). Who uses what and how often?: Personality predictors of multiplatform social media use among young adults. Journal of Research in Personality, 91, 104005. DOI:10.1016/j.jrp.2020.104005

Villegas-Ch, W., Molina, S., Janón, V. D., Montalvo, E., & Mera-Navarrete, A. (2022). Proposal of a Method for the Analysis of Sentiments in SNs with the Use of R. Paper presented at the Informatics. DOI:10.3390/informatics9030063

Yang, M., Zhang, S., Zhang, H., & Xia, J. (2019). A new user behavior evaluation method in online SN. Journal of Information Security and Applications, 47, 217-222. DOI:10.2139/ssrn.4074509

Yu, S., Xia, F., Zhang, C., Wei, H., Keogh, K., & Chen, H. (2021). Familiarity-based collaborative team recognition in academic SNs. IEEE Transactions on Computational Social Systems, 9(5), 1432-1445. https://arxiv.org/pdf/2204.02667

Yuliansyah, H., Othman, Z. A., & Bakar, A. A. (2020). Taxonomy of link prediction for SN analysis: a review. IEEE Access, 8, 183470-183487. DOI:10.1109/ACCESS.2020.3029122

Zheng, H., & Ling, R. (2021). Drivers of social media fatigue: A systematic review. Telematics and Informatics, 64, 101696. DOI: 10.1016/j.tele.2021.101696

Zulfikar Alom, M., Carminati, B., & Ferrari, E. (2020). A deep learning model for Twitter spam detection. Online SNs and Media, 18, 1-12. DOI: 10.1016/j.osnem.2020.100079

Downloads

Published

2024-03-10

How to Cite

Yarets’ka, N. O., Borovyk, L. V., Traskovetska L. М., Ramskyi, A. O., & Poplavskaya, O. A. (2024). Using artificial intelligence in sn analysis: building models to understand and predict user behavior . Journal of Management & Technology, 24, 287–303. Retrieved from https://revistagt.fpl.emnuvens.com.br/get/article/view/2879

Issue

Section

ARTIGO