Todavía estoy aquí para predecir: una comparación entre SARIMA y SARIMAX para las ventas estacionales de aves en Brasil
DOI:
https://doi.org/10.20397/2177-6652/2025.v25i3.3199Palabras clave:
Séries Temporais, SARIMA, SARIMAX, Sazonalidade.Resumen
Propósito: Esta investigación tiene como objetivo comparar la aplicación de los modelos econométricos SARIMA y SARIMAX en la previsión de la demanda de productos estacionales, utilizando como base datos reales de ventas mensuales de aves congeladas de dos marcas competidoras en Brasil.
Metodología: La metodología se basa en la modelización de series temporales mediante los modelos SARIMA y SARIMAX. La estrategia adoptada incluyó la división de los datos en conjuntos de entrenamiento y prueba, una técnica ampliamente utilizada en estudios empíricos con énfasis en la predicción fuera de la muestra, con el fin de verificar la robustez de los modelos, en consonancia con los fundamentos de las técnicas de aprendizaje automático.
Originalidad/Relevancia: La originalidad del estudio reside en la aplicación de estos modelos a la previsión de la demanda de aves navideñas de una empresa brasileña, un nicho poco explorado en la literatura nacional, además de incorporar una variable exógena que representa la competencia directa en el mercado. El estudio también contribuye al aproximar prácticas tradicionales de series temporales a la lógica predictiva del aprendizaje automático.
Principales Resultados: Los resultados mostraron un rendimiento superior del modelo SARIMA, con menor error de previsión y mayor capacidad de generalización, incluso sin el uso de variables externas.
Contribuciones Teóricas/Metodológicas: La investigación refuerza la aplicabilidad de modelos estacionales en mercados con fuerte ciclicidad y demuestra que, en ciertos contextos, la simplicidad estadística puede superar la complejidad multivariada, incluso en entornos volátiles y competitivos.
Citas
Abirami,, S. (2024). Sales prediction based on sarimax time series algorithm. International Scientific Journal of Engineering and Management. https://doi.org/10.55041/isjem01493.
Adli, K. A. (2020). Forecasting steel prices using ARIMAX model: A case study of Turkey. The International Journal of Business Management and Technology, 4(5), 62–68.
Alencar, J. F. de. (2022). Seleção de modelo de previsão de demanda agregada para série temporal no setor industrial de tintas e vernizes (Trabalho de Conclusão de Curso). Universidade Federal de Pernambuco.
Alharbi, F., & Csala, D. (2022). A Seasonal Autoregressive Integrated Moving Average with Exogenous Factors (SARIMAX) Forecasting Model-Based Time Series Approach. Inventions. https://doi.org/10.3390/inventions7040094.
Armstrong, J. S., & Collopy, F. (1992). Error measures for generalizing about forecasting methods: Empirical comparisons. International Journal of Forecasting, 8, 69–80.
Bertaglia, P. R. (2003). Logística e gerenciamento da cadeia de abastecimento. São Paulo: Saraiva.
Bianchi, L., Jarrett, J., & Hanumara, R. (1998). Improving forecasting for telemarketing centers by ARIMA modeling with intervention. International Journal of Forecasting, 14, 497-504. https://doi.org/10.1016/S0169-2070(98)00037-5.
Bierens, H. J. (1987). Armax model specification testing, with an application to unemployment in the Netherlands. Journal of Econometrics, 35, 161–190.
Box, G. E., Jenkins, G. M., & MacGregor, J. F. (1974). Some recent advances in forecasting and control. Journal of the Royal Statistical Society: Series C (Applied Statistics), 23, 158–179.
Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control. Hoboken, NJ: John Wiley & Sons.
Broni-Bediako, E., Buabeng, A., & Allotey, P. (2024). Predicting Ghana’s Daily Natural Gas Consumption Using Time Series Models. Petroleum Science and Engineering. https://doi.org/10.11648/j.pse.20240801.14.
Ediger, V. S., & Akar, S. (2007). ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy, 35, 1701–1708.
Elamin, N., & Fukushige, M. (2018). Modeling and forecasting hourly electricity demand by SARIMAX with interactions. Energy. https://doi.org/10.1016/J.ENERGY.2018.09.157.
Elshewey, A., Shams, M., Elhady, A., Shohieb, S., Abdelhamid, A., Ibrahim, A., & Tarek, Z. (2022). A Novel WD-SARIMAX Model for Temperature Forecasting Using Daily Delhi Climate Dataset. Sustainability. https://doi.org/10.3390/su15010757.
Formigoni, W. C., Olga, M., Henning, E., Moro, G., & Wayne, R. S. (2013). Aplicação de um modelo SARIMA na previsão de vendas de motocicletas. Exacta, 11(1), 77–88.
Handayani, N., Maslim, M., & Mudjihartono, P. (2020). Forecasting of Catfish Sales by Time Series Using the SARIMA method. Journal of Biomedical Informatics, 11, 83. https://doi.org/10.24002/jbi.v11i2.3535.
Hawinkel, S., Waegeman, W., & Maere, S. (2023). Out-of-Sample R2: Estimation and Inference. The American Statistician, 78, 15 - 25. https://doi.org/10.1080/00031305.2023.2216252.
Herrera, R. L., Petropoulos, F., Safari, A., & Davallou, M. (2019). Forecast: Forecasting Functions for Time Series and Linear Models. R Foundation for Statistical Computing. https://cran.r-project.org/web/packages/forecast/index.html
Hyndman, R. J., & Athanasopoulos, G. (2020). Checkresiduals: Check Residuals from Fitted Time Series Models. R Foundation for Statistical Computing. https://cran.r-project.org/web/packages/checkresiduals/index.html
Jalalkamali, A., Moradi, M., & Moradi, N. (2015). Application of several artificial intelligence models and ARIMAX model for forecasting drought using the Standardized Precipitation Index. International Journal of Environmental Science and Technology, 12, 1201–1210.
Khalid, O. (2024). Short-term and long-term product demand forecasting with time series models. Journal of Trends in Financial and Economics. https://doi.org/10.61784/jtfe3022.
Kulkarni, R., & Rane, M. (2020). Pattern Recognition - Product Sales Analysis Using SARIMA Model in Time Series Forecasting. .
Kwiatkowski, D., Morettin, P. A., & Singer, J. D. (1992). Tseries: Time Series Analysis and Computational Finance. R Foundation for Statistical Computing. https://cran.r-project.org/web/packages/tseries/index.html
Lee, G., & Bang, J. (2024). Forecasting Container Throughput of Singapore Port Considering Various Exogenous Variables Based on SARIMAX Models. Forecasting. https://doi.org/10.3390/forecast6030038.
Liu, Z., Zhu, Z., Gao, J., & Xu, C. (2021). Forecast Methods for Time Series Data: A Survey. IEEE Access, 9, 91896-91912. https://doi.org/10.1109/ACCESS.2021.3091162.
Lucas, E. C., Mendes-Da-Silva, W., & Lyons, A. C. (2017). Gender differences in attitudes towards driving and demand for private Insurance: Evidence from middle class drivers. Transportation research part F: traffic psychology and behaviour, 47, 72-85.
Manigandan, P., Alam, M. S., Alharthi, M., Khan, U., Alagirisamy, K., Pachiyappan, D., & Rehman, A. (2021). Forecasting natural gas production and consumption in United States—Evidence from SARIMA and SARIMAX models. Energies, 14, 6021.
Oh, J., & Seong, B. (2024). Forecasting with a combined model of ETS and ARIMA. Communications for Statistical Applications and Methods. https://doi.org/10.29220/csam.2024.31.1.143.
Perez-Guerra, U., Macedo, R., Manrique, Y., Condori, E., Gonzáles, H., Fernández, E., Luque, N., Pérez-Durand, M., & García-Herreros, M. (2023). Seasonal autoregressive integrated moving average (SARIMA) time-series model for milk production forecasting in pasture-based dairy cows in the Andean highlands. PLOS ONE, 18. https://doi.org/10.1371/journal.pone.0288849.
Rocha, I. B. M. S. (2014). Impacto da concorrência na performance do retalhista (Dissertação de Mestrado). Universidade Católica Portuguesa – Porto.
Serrano, A., Rodrigues, G., Martins, P., Saiki, G., Filho, G., Gonçalves, V., & De Oliveira Albuquerque, R. (2024). Statistical Comparison of Time Series Models for Forecasting Brazilian Monthly Energy Demand Using Economic, Industrial, and Climatic Exogenous Variables. Applied Sciences. https://doi.org/10.3390/app14135846.
Slack, N., Chambers, S., & Johnston, R. (2002). Administração da produção (2ª ed., M. T. C. Oliveira & F. Alher, Trads.). São Paulo: Atlas.
Sukparungsee, S., Areepong, Y., & Taboran, R. (2020). Exponentially weighted moving average—Moving average charts for monitoring the process mean. PLoS ONE, 15. https://doi.org/10.1371/journal.pone.0228208.
Tamura, L. K. (2013). Séries temporais com variáveis exógenas e gráficos de controle como ferramentas de decisão no mercado financeiro. (Dissertação de Mestrado). São Paulo.
Tarsitano, A., & Amerise, I. L. (2017). Short-term load forecasting using a two-stage SARIMAX model. Energy, 133, 108–114.
Tubino, D. F. (2000). Manual de planejamento e controle da produção (2ª ed.). São Paulo: Atlas.
Wahyudi, A., & Febriani, F. (2024). Time-Series Forecasting of Particulate Organic Carbon on the Sunda Shelf: Comparative Performance of the SARIMA and SARIMAX Models. Regional Studies in Marine Science. https://doi.org/10.1016/j.rsma.2024.103863.
Wanke, R., & Julianelli, L. (2006). Previsão de vendas: Processos organizacionais e métodos quantitativos e qualitativos (1ª ed.). São Paulo: Atlas.
Zhang, C., Tian, Y., & Fan, Z. (2021). Forecasting sales using online review and search engine data: A method based on PCA–DSFOA–BPNN. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2021.07.010.
Zhou, W., Jiang, R., Ding, S., Cheng, Y., Li, Y., & Tao, H. (2021). A novel grey prediction model for seasonal time series. Knowl. Based Syst., 229, 107363. https://doi.org/10.1016/j.knosys.2021.107363.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista Gestão & Tecnologia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Os direitos, inclusive os de tradução, são reservados. É permitido citar parte de artigos sem autorização prévia desde que seja identificada a fonte. A reprodução total de artigos é proibida. Em caso de dúvidas, consulte o Editor.