Todavía estoy aquí para predecir: una comparación entre SARIMA y SARIMAX para las ventas estacionales de aves en Brasil

Autores/as

DOI:

https://doi.org/10.20397/2177-6652/2025.v25i3.3199

Palabras clave:

Séries Temporais, SARIMA, SARIMAX, Sazonalidade.

Resumen

Propósito: Esta investigación tiene como objetivo comparar la aplicación de los modelos econométricos SARIMA y SARIMAX en la previsión de la demanda de productos estacionales, utilizando como base datos reales de ventas mensuales de aves congeladas de dos marcas competidoras en Brasil.

Metodología: La metodología se basa en la modelización de series temporales mediante los modelos SARIMA y SARIMAX. La estrategia adoptada incluyó la división de los datos en conjuntos de entrenamiento y prueba, una técnica ampliamente utilizada en estudios empíricos con énfasis en la predicción fuera de la muestra, con el fin de verificar la robustez de los modelos, en consonancia con los fundamentos de las técnicas de aprendizaje automático.

Originalidad/Relevancia: La originalidad del estudio reside en la aplicación de estos modelos a la previsión de la demanda de aves navideñas de una empresa brasileña, un nicho poco explorado en la literatura nacional, además de incorporar una variable exógena que representa la competencia directa en el mercado. El estudio también contribuye al aproximar prácticas tradicionales de series temporales a la lógica predictiva del aprendizaje automático.

Principales Resultados: Los resultados mostraron un rendimiento superior del modelo SARIMA, con menor error de previsión y mayor capacidad de generalización, incluso sin el uso de variables externas.

Contribuciones Teóricas/Metodológicas: La investigación refuerza la aplicabilidad de modelos estacionales en mercados con fuerte ciclicidad y demuestra que, en ciertos contextos, la simplicidad estadística puede superar la complejidad multivariada, incluso en entornos volátiles y competitivos.

Biografía del autor/a

Edimilson Costa Lucas, Universidade Presbiteriana Mackenzie (PPGCFTG)

Doutor em Administração de Empresas (linha de Finanças) pela EAESP/FGV. Mestre em Estatística pela UNICAMP. MBA em Finanças pela FGV. Bacharel em Matemática pela UFU. Professor do programa de pós-graduação (stricto sensu) em Controladoria, Finanças e Tecnologias em Gestão na Universidade Presbiteriana Mackenzie. Professor do Departamento de Ciências Atuariais da EPPEN/UNIFESP.

Adilson Carlos Yoshikuni, Universidade Presbiteriana Mackenzie (PPGCFTG)

Pós-doutor e doutor em Administração de Empresas pela FGV-EAESP (2018,2015), Mestre em Ciências Contábeis e Atuariais pela PUC-SP (2005), Pós-graduado em MBA Executivo Internacional pela FGV-EBAPE e University of California Irvine- EUA (2005), Bacharel em Ciência da Computação (1995) e Análise de Sistema (1993) pela Universidade Paulista. Na Universidade Presbiteriana Mackenzie é professor integral do programa de Mestrado e de Doutorado Profissional em Controladoria, Finanças e Tecnologias de Gestão Empresariais (PPGCFTG), e coordenador do grupo de pesquisa em Technology Analytics in Management, Accounting and Finance (TAMAF), professor convidado do Instituto de Desenvolvimento Educacional IDE da FGV.

Carlos Alberto Di Agustini, Strong Business School

Doutor em engenharia de produção, mestre em administração e especialista em finanças pela New York University (Stern) e University of California (UCLA). Foi CEO e diretor estatutário de empresa financeira da Volkswagen, executivo do Banco Caterpillar, Banco Itaú e Grupo Ultra. É autor de artigos e livros na área de finanças. Professor convidado da FGV, professor do Instituto Mauá de Tecnologia, professor pesquisador da Strong Business School e professor da USCS. Atua como membro de conselho de administração.

Vinícius Augusto Brunassi Silva, FECAP, Programa de Mestrado Profissional em Administração – Finanças.

Doutor e Mestre em Administração de Empresas (linha de Finanças) pela FGV-EAESP. Professor e Pesquisador da FECAP no programa de mestrado profissional em Administração (Finanças).

Citas

Abirami,, S. (2024). Sales prediction based on sarimax time series algorithm. International Scientific Journal of Engineering and Management. https://doi.org/10.55041/isjem01493.

Adli, K. A. (2020). Forecasting steel prices using ARIMAX model: A case study of Turkey. The International Journal of Business Management and Technology, 4(5), 62–68.

Alencar, J. F. de. (2022). Seleção de modelo de previsão de demanda agregada para série temporal no setor industrial de tintas e vernizes (Trabalho de Conclusão de Curso). Universidade Federal de Pernambuco.

Alharbi, F., & Csala, D. (2022). A Seasonal Autoregressive Integrated Moving Average with Exogenous Factors (SARIMAX) Forecasting Model-Based Time Series Approach. Inventions. https://doi.org/10.3390/inventions7040094.

Armstrong, J. S., & Collopy, F. (1992). Error measures for generalizing about forecasting methods: Empirical comparisons. International Journal of Forecasting, 8, 69–80.

Bertaglia, P. R. (2003). Logística e gerenciamento da cadeia de abastecimento. São Paulo: Saraiva.

Bianchi, L., Jarrett, J., & Hanumara, R. (1998). Improving forecasting for telemarketing centers by ARIMA modeling with intervention. International Journal of Forecasting, 14, 497-504. https://doi.org/10.1016/S0169-2070(98)00037-5.

Bierens, H. J. (1987). Armax model specification testing, with an application to unemployment in the Netherlands. Journal of Econometrics, 35, 161–190.

Box, G. E., Jenkins, G. M., & MacGregor, J. F. (1974). Some recent advances in forecasting and control. Journal of the Royal Statistical Society: Series C (Applied Statistics), 23, 158–179.

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control. Hoboken, NJ: John Wiley & Sons.

Broni-Bediako, E., Buabeng, A., & Allotey, P. (2024). Predicting Ghana’s Daily Natural Gas Consumption Using Time Series Models. Petroleum Science and Engineering. https://doi.org/10.11648/j.pse.20240801.14.

Ediger, V. S., & Akar, S. (2007). ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy, 35, 1701–1708.

Elamin, N., & Fukushige, M. (2018). Modeling and forecasting hourly electricity demand by SARIMAX with interactions. Energy. https://doi.org/10.1016/J.ENERGY.2018.09.157.

Elshewey, A., Shams, M., Elhady, A., Shohieb, S., Abdelhamid, A., Ibrahim, A., & Tarek, Z. (2022). A Novel WD-SARIMAX Model for Temperature Forecasting Using Daily Delhi Climate Dataset. Sustainability. https://doi.org/10.3390/su15010757.

Formigoni, W. C., Olga, M., Henning, E., Moro, G., & Wayne, R. S. (2013). Aplicação de um modelo SARIMA na previsão de vendas de motocicletas. Exacta, 11(1), 77–88.

Handayani, N., Maslim, M., & Mudjihartono, P. (2020). Forecasting of Catfish Sales by Time Series Using the SARIMA method. Journal of Biomedical Informatics, 11, 83. https://doi.org/10.24002/jbi.v11i2.3535.

Hawinkel, S., Waegeman, W., & Maere, S. (2023). Out-of-Sample R2: Estimation and Inference. The American Statistician, 78, 15 - 25. https://doi.org/10.1080/00031305.2023.2216252.

Herrera, R. L., Petropoulos, F., Safari, A., & Davallou, M. (2019). Forecast: Forecasting Functions for Time Series and Linear Models. R Foundation for Statistical Computing. https://cran.r-project.org/web/packages/forecast/index.html

Hyndman, R. J., & Athanasopoulos, G. (2020). Checkresiduals: Check Residuals from Fitted Time Series Models. R Foundation for Statistical Computing. https://cran.r-project.org/web/packages/checkresiduals/index.html

Jalalkamali, A., Moradi, M., & Moradi, N. (2015). Application of several artificial intelligence models and ARIMAX model for forecasting drought using the Standardized Precipitation Index. International Journal of Environmental Science and Technology, 12, 1201–1210.

Khalid, O. (2024). Short-term and long-term product demand forecasting with time series models. Journal of Trends in Financial and Economics. https://doi.org/10.61784/jtfe3022.

Kulkarni, R., & Rane, M. (2020). Pattern Recognition - Product Sales Analysis Using SARIMA Model in Time Series Forecasting. .

Kwiatkowski, D., Morettin, P. A., & Singer, J. D. (1992). Tseries: Time Series Analysis and Computational Finance. R Foundation for Statistical Computing. https://cran.r-project.org/web/packages/tseries/index.html

Lee, G., & Bang, J. (2024). Forecasting Container Throughput of Singapore Port Considering Various Exogenous Variables Based on SARIMAX Models. Forecasting. https://doi.org/10.3390/forecast6030038.

Liu, Z., Zhu, Z., Gao, J., & Xu, C. (2021). Forecast Methods for Time Series Data: A Survey. IEEE Access, 9, 91896-91912. https://doi.org/10.1109/ACCESS.2021.3091162.

Lucas, E. C., Mendes-Da-Silva, W., & Lyons, A. C. (2017). Gender differences in attitudes towards driving and demand for private Insurance: Evidence from middle class drivers. Transportation research part F: traffic psychology and behaviour, 47, 72-85.

Manigandan, P., Alam, M. S., Alharthi, M., Khan, U., Alagirisamy, K., Pachiyappan, D., & Rehman, A. (2021). Forecasting natural gas production and consumption in United States—Evidence from SARIMA and SARIMAX models. Energies, 14, 6021.

Oh, J., & Seong, B. (2024). Forecasting with a combined model of ETS and ARIMA. Communications for Statistical Applications and Methods. https://doi.org/10.29220/csam.2024.31.1.143.

Perez-Guerra, U., Macedo, R., Manrique, Y., Condori, E., Gonzáles, H., Fernández, E., Luque, N., Pérez-Durand, M., & García-Herreros, M. (2023). Seasonal autoregressive integrated moving average (SARIMA) time-series model for milk production forecasting in pasture-based dairy cows in the Andean highlands. PLOS ONE, 18. https://doi.org/10.1371/journal.pone.0288849.

Rocha, I. B. M. S. (2014). Impacto da concorrência na performance do retalhista (Dissertação de Mestrado). Universidade Católica Portuguesa – Porto.

Serrano, A., Rodrigues, G., Martins, P., Saiki, G., Filho, G., Gonçalves, V., & De Oliveira Albuquerque, R. (2024). Statistical Comparison of Time Series Models for Forecasting Brazilian Monthly Energy Demand Using Economic, Industrial, and Climatic Exogenous Variables. Applied Sciences. https://doi.org/10.3390/app14135846.

Slack, N., Chambers, S., & Johnston, R. (2002). Administração da produção (2ª ed., M. T. C. Oliveira & F. Alher, Trads.). São Paulo: Atlas.

Sukparungsee, S., Areepong, Y., & Taboran, R. (2020). Exponentially weighted moving average—Moving average charts for monitoring the process mean. PLoS ONE, 15. https://doi.org/10.1371/journal.pone.0228208.

Tamura, L. K. (2013). Séries temporais com variáveis exógenas e gráficos de controle como ferramentas de decisão no mercado financeiro. (Dissertação de Mestrado). São Paulo.

Tarsitano, A., & Amerise, I. L. (2017). Short-term load forecasting using a two-stage SARIMAX model. Energy, 133, 108–114.

Tubino, D. F. (2000). Manual de planejamento e controle da produção (2ª ed.). São Paulo: Atlas.

Wahyudi, A., & Febriani, F. (2024). Time-Series Forecasting of Particulate Organic Carbon on the Sunda Shelf: Comparative Performance of the SARIMA and SARIMAX Models. Regional Studies in Marine Science. https://doi.org/10.1016/j.rsma.2024.103863.

Wanke, R., & Julianelli, L. (2006). Previsão de vendas: Processos organizacionais e métodos quantitativos e qualitativos (1ª ed.). São Paulo: Atlas.

Zhang, C., Tian, Y., & Fan, Z. (2021). Forecasting sales using online review and search engine data: A method based on PCA–DSFOA–BPNN. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2021.07.010.

Zhou, W., Jiang, R., Ding, S., Cheng, Y., Li, Y., & Tao, H. (2021). A novel grey prediction model for seasonal time series. Knowl. Based Syst., 229, 107363. https://doi.org/10.1016/j.knosys.2021.107363.

Publicado

2025-06-30

Cómo citar

Costa Lucas, E., Carlos Yoshikuni, A., Di Agustini, C. A., & Augusto Brunassi Silva, V. (2025). Todavía estoy aquí para predecir: una comparación entre SARIMA y SARIMAX para las ventas estacionales de aves en Brasil. Revista Gestão & Tecnologia, 25(3), 98–118. https://doi.org/10.20397/2177-6652/2025.v25i3.3199

Número

Sección

ARTIGO