ANALYSIS DIMENSIONS FOR UNDERSTANDING DIGITAL TWINS: A DISCUSSION IN THE BRAZILIAN SCENARIO
Palabras clave:
Digital Twin; Brazilian Industry; Industry 5.0.Resumen
Abstract:
Objective: To identify important aspects for the analysis of digital twins and discuss digital twins created for the Brazilian industry based on characteristics of this technology.
Methodology: A literature review of digital twins definitions and analysis of digital twins created for the Brazilian industry considering five analysis dimensions.
Originality/relevance: Proposition and use of a set of dimensions to analyze digital twins, which can be used by researchers and practitioners for better understanding and characterizing digital twins proposals.
Results: Considering the digital twins created for the Brazilian industry, we found these proposals distinguish in some aspects, mainly the data flow between physical and digital objects, system level, and cognitive capabilities, but aspects such as interoperability, cognitive processes, and life cycle are uncovered in these digital twins. These aspects, however, are responsible for the innovation and disruption digital twins can provide to the Industry.
Contribution: Definition of dimensions to analyze digital twins and evidence of the presence and absence of some characteristics in digital twins created for the Brazilian industry.
Citas
Abburu, S., Berre, A.J., Jacoby, M., Roman, D., Stojanovic, L., Stojanovic, N. (2020) Cognitwin - hybrid and cognitive digital twins for the process industry. In: Proceedings of the 2020 IEEE International Conference on Engineering, Technology and Innovation, ICE/ITMC 2020.
Adl, A.E. (2016). The cognitive digital twins: Vision, architecture framework and categories.
Aheleroff, S., Xu, X., Zhong, R.Y., Lu, Y. (2021). Digital twin as a service (dtaas) in industry 4.0: an architecture reference model. Advanced Engineering Informatics 47, 101225.
Al Faruque, M.A., Muthirayan, D., Yu, S.Y., Khargonekar, P.P. (2021). Cognitive digital twin for manufacturing systems. In: Proceedings of the Design, Automation and Test in Europe, DATE, vol. 2021-February, p. 440 – 445.
Ali, M.I., Patel, P., Breslin, J.G., Harik, R., Sheth, A. (2021). Cognitive digital twins for smart manufacturing. IEEE Intelligent Systems 36(2), 96–100.
Alves, R.G., Maia, R.F., Lima, F. (2023). Development of a digital twin for smart farming: Irrigation management system for water saving. Journal of Cleaner Production p. 135920.
Araujo Jr, C.A.A.d., Villanueva, J.M.M., Almeida, R.J.S.d., de Medeiros, I.E.A. (2021). Digital twins of the water cooling system in a power plant based on fuzzy logic. Sensors 21(20), 6737.
Ariesen-Verschuur, N., Verdouw, C., Tekinerdogan, B. (2022). Digital twins in greenhouse horticulture: A review. Computers and Electronics in Agriculture.
Batty, M. (2018). Digital twins. Environment and Planning B: Urban Analytics and City Science, 45(5), 817-820.
Beetz, J. (2021). Semantic digital twins for the built environment-a key facilitator for the European green deal? In: CEUR Workshop Proceedings, vol. 2887.
Belyaev, A. (2021). Modelling the semantics of data of an asset administration shell with elements of eclass. Joint white paper from Plattform Industrie 4.0 and ECLASS.
Boje, C., Kubicki, S., Guerriero, A. (2021). A 4d bim system architecture for the semantic web. Lecture Notes in Civil Engineering 98, 561 – 573.
Boschert, S., Heinrich, C., Rosen, R. (2018). Next generation digital twin. In: Proc. tmce, vol. 2018, pp. 7–11, Las Palmas de Gran Canaria, Spain.
Buchheit, M., Karmarkar, A., Schrecker, S., LeBlanc, J. (2017). The industrial internet of things volume g1: Reference architecture. IIC: PUB G 1.
D’Amico, R.D., Erkoyuncu, J.A., Addepalli, S., Penver, S. (2022). Cognitive digital twin: An approach to improve maintenance management. CIRP Journal of Manufacturing Science and Technology 38, 613 – 630.
Diéz, A., De Lara, J. (2021). Semantic digital twins for organizational development. In: CEUR Workshop Proceedings, vol. 2887.
Douglas, D., Kelly, G., Kassem, M. (2021). Bim, digital twin and cyber-physical systems: crossing and blurring boundaries. arXiv preprint arXiv:2106.11030.
Durão, L.F.C.S., Haag, S., Anderl, R., Schützer, K., Zancul, E. (2018). Digital twin requirements in the context of industry 4.0. In: Chiabert, P., Bouras, A., Noël, F., Ríos, J. (eds.) Product Lifecycle Management to Support Industry 4.0, pp.204–214, Springer International Publishing, Cham, ISBN 978-3-03001614-2
Eirinakis, P., Kalaboukas, K., Lounis, S., Mourtos, I., Rozanec, J.M., Stojanovic, N., Zois, G. (2020). Enhancing cognition for digital twins. In: Proceedings - 2020 IEEE International Conference on Engineering, Technology and Innovation.
Eirinakis, P., Lounis, S., Plitsos, S., Arampatzis, G., Kalaboukas, K., Kenda, K., Lu, J., Rozanec, J.M., Stojanovic, N. (2022). Cognitive digital twins for resilience in production: A conceptual framework. Information (Switzerland) 13(1).
Falekas, G., Karlis, A. (2021). Digital twin in electrical machine control and predictive maintenance: state-of-the-art and future prospects. Energies 14(18).
Fernandes, S.V., João, D.V., Cardoso, B.B., Martins, M.A., Carvalho, E.G. (2022). Digital twin concept developing on an electrical distribution system—an application case. Energies 15(8), 2836.
Grieves, M.: Digital twin: manufacturing excellence through virtual factory replication (2014). White paper 1(2014), 1–7.
Holler, M., Uebernickel, F., Brenner, W. (2016). Digital twin concepts in manufacturing industries-a literature review and avenues for further research. In: Proceedings of the 18th International Conference on Industrial Engineering (IJIE), Seoul, Korea, pp. 10–12.
Hyre, A., Harris, G., Osho, J., Pantelidakis, M., Mykoniatis, K., Liu, J. (2022). Digital twins: Representation, replication, reality, and relational (4rs). Manufacturing Letters 31, 20–23 (2022), ISSN 2213-8463.
João, D.V., Lodetti, P.Z., Martins, M.A.I., Almeida, J.F. (2020). Virtual and augmented reality applied in power electric utilities for human interface improvement– a study case for best practices. In: 2020 IEEE Technology & Engineering Management Conference (TEMSCON), pp. 1–4, IEEE.
Johnson-Laird, P.N.: Mental models and human reasoning (2010). Proceedings of the National Academy of Sciences 107(43), 18243–18250.
Kmetz, J. L. (2018). The Information Processing Theory of Organization: Managing technology accession in complex systems. Routledge.
Koulamas, C., Kalogeras, A. (2018). Cyber-physical systems and digital twins in the industrial internet of things [cyber-physical systems]. Computer 51(11), 95–98 (2018), https://doi.org/10.1109/MC.2018.2876181
Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W. (2018). Digital twin in manufacturing: A categorical literature review and classification. Ifac-PapersOnline 51(11), 1016–1022.
Kümpel, M., Mueller, C.A., Beetz, M. (2021). Semantic digital twins for retail logistics. In: Dynamics in Logistics: Twenty-Five Years of Interdisciplinary Logistics Research in Bremen, Germany, pp. 129–153, Springer International Publishing Cham.
Leng, J., Sha, W., Wang, B., Zheng, P., Zhuang, C., Liu, Q., Wuest, T., Mourtzis, D., Wang, L. (2022). Industry 5.0: Prospect and retrospect. Journal of Manufacturing Systems 65, 279–295, ISSN 0278-6125.
Lima, G., Factori, L., Junqueira, M., dos Santos, R., Borba, L., Gonçalves, O. (2022). Aplicação de conceitos de gêmeo digital e bim: Estudo de caso na gestão de pontes e viadutos. In: 4º Congresso Português de Building Information Modelling, vol. 1.
Lu, J., Zheng, X., Gharaei, A., Kalaboukas, K., Kiritsis, D. (2020). Cognitive twins for supporting decision-makings of internet of things systems. In: Proceedings of 5th International Conference on the Industry 4.0 Model for Advanced Manufacturing: AMP 2020, pp. 105–115, Springer.
Lu, Y., Min, Q., Liu, Z., Wang, Y. (2019). An iot-enabled simulation approach for process planning and analysis: a case from the engine re-manufacturing industry. International Journal of Computer Integrated Manufacturing 32(4-5), 413– 429.
Maddikunta, P.K.R., Pham, Q.V., Prabadevi, B., Deepa, N., Dev, K., Gadekallu, T.R., Ruby, R., Liyanage, M. (2022). Industry 5.0: A survey on enabling technologies and potential applications. Journal of Industrial Information Integration 26, 100257.
McDermott, K.B., Roediger, H.L. (2018). Memory (encoding, storage, retrieval). General Psychology FA2018. Noba Project: Milwaukie, OR pp. 117–153.
Moreno, T., Almeida, A., Toscano, C., Ferreira, F., Azevedo, A. (2023). Scalable digital twins for industry 4.0 digital services: a dataspaces approach. Production & Manufacturing Research 11(1), 2173680 (2023), https://doi.org/10.1080/21693277.2023.2173680, URL https://doi.org/10.1080/21693277.2023.2173680
Müller, J.: Enabling technologies for industry 5.0 (2020). European Commission pp. 8–10.
Rebentisch, E., Rhodes, D.H., Soares, A.L., Zimmerman, R., Tavares, S. (2021). The digital twin as an enabler of digital transformation: a sociotechnical perspective. In: International Conference on Industrial Informatics (INDIN), pp. 1–6.
Schweichhart, K. (2019). Rami 4.0 reference architectural model for industrie 4.0. In-Tech 66(2), 15.
Shafto, M., Conroy, M., Doyle, R., Glaessgen, E., Kemp, C., LeMoigne, J., Wang, L. (2012). Modeling, simulation, information technology & processing roadmap. National Aeronautics and Space Administration 32(2012), 1–38.
Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology 94, 3563–3576.
Turnitsa, C. (2005). Extending the levels of conceptual interoperability models. In: Proceedings IEEE summer computer simulation conference, IEEE CS Press.
Verdouw, C., Tekinerdogan, B., Beulens, A., Wolfert, S. (2021). Digital twins in farming systems. Agric. Syst 189, 103046.
Wang, W., Tolk, A., Wang, W. (2009). The levels of conceptual interoperability model: applying systems engineering principles to m&s. In: Proceedings of the 2009 Spring Simulation Multiconference, pp. 1–9.
Wang, Y., Kang, X., Chen, Z. (2022). A survey of digital twin techniques in smart manufacturing and management of energy applications. Green Energy and Intelligent Transportation, p. 100014.
Wassermann, E., Fay, A. (2017). Interoperability rules for heterogeneous multi-agent systems: Levels of conceptual interoperability model applied for multi-agent systems. In: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), pp. 89–95, IEEE.
Wright, L., Davidson, S. (2020). How to tell the difference between a model and a digital twin. Advanced Modeling and Simulation in Engineering Sciences 7(1), 1–13.
Xu, X., Lu, Y., Vogel-Heuser, B., Wang, L. (2021). Industry 4.0 and industry 5.0 - inception, conception and perception. Journal of Manufacturing Systems 61, 530–535.
Yu, W., Patros, P., Young, B., Klinac, E., Walmsley, T.G. (2022). Energy digital twin technology for industrial energy management: Classification, challenges and future. Renewable and Sustainable Energy Reviews 161, 112407.
Zezulka, F., Marcon, P., Vesely, I., Sajdl, O. (2016). Industry 4.0 - an introduction to the phenomenon. IFAC-PapersOnLine 49(25), 8–12.
Zheng, X., Lu, J., Kiritsis, D. (2022). The emergence of cognitive digital twin: vision, challenges and opportunities. International Journal of Production Research 60(24), 7610 – 7632.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Journal of Management & Technology
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Os direitos, inclusive os de tradução, são reservados. É permitido citar parte de artigos sem autorização prévia desde que seja identificada a fonte. A reprodução total de artigos é proibida. Em caso de dúvidas, consulte o Editor.