Using the fmea method as a response to a customer complaint: a case study
DOI:
https://doi.org/10.20397/2177-6652/2021.v21i1.2017Palabras clave:
production engineering, mechanical engineering technology, quality management, FMEA, PFMEAResumen
One of the most popular quality management methods is FMEA (Failure mode and effects analysis), which is used to analyze the risk of defects in the product or process in order to eliminate them even before they occur. Its effective implementation reduces the costs of elimination of defects, which increase exponentially in subsequent processes of product implementation. FMEA is most often used where highly complex products are manufactured or where production is a multi-stage process and many departments are involved. The aim of the article was to use the PFMEA to assess the quality of window guides and to improve their quality. This analysis was carried out based on complaints of the main business partner and helped to indicate the main cause for the complaint, identify the corrective actions and check the effectiveness of the proposed corrective actions. The analysis helped avoid similar problems in related products produced on the same production line.Citas
Aized, T., Ahmad, M., Jamal, M.H., Mahmood, A., Rehman, S.U.U., Srai, J.S. (2020). Automotive leaf spring design and manufacturing process improvement using failure mode and effects analysis (FMEA). International Journal Of Engineering Business Management, 12, Art. No 1847979020942438, doi: 10.1177/1847979020942438.
Banduka, N., Tadic, D., Macuzic, I, Crnjac, M. (2018). Extended process failure mode and effect analysis (PFMEA) for the automotive industry: The FSQC-PFMEA. Advances In Production Engineering & Management,13(2), 206-215, doi: 10.14743/apem2018.2.285.
Banduka, N., Veža, I., Bilić, B. (2016). An integrated lean approach to process failure mode and effect analysis (PFMEA): A case study from automotive industry. Advances in Production Engineering & Management, 11(4), 355-365, doi: 10.14743/apem2016.4.233.
Baynal, K., Sarı, T., Akpınar, B. (2018). Risk management in automotive manufacturing process based on FMEA and grey relational analysis: A case study. Advances in Production Engineering & Management, 13(1), 69-80, doi: 10.14743/apem2018.1.274.
Chi, C.F., Sigmund, D., Astardi, M.O. (2020). Classification Scheme for Root Cause and Failure Modes and Effects Analysis (FMEA) of Passenger Vehicle Recalls. Reliability Engineering & System Safety, 200, Art No 106929, doi: 10.1016/j.ress.2020.106929.
Czajkowska, A. Identification and analysis of non-conformities in production of construction materials with the example of hot-rolled sheet metal. (2015). In: 24th International Conference on Metallurgy and Materials (METAL 2015), Brno, Czech Rep., 2015, Tanger, Ostrava, 2015, 1878-1883.
Dulska, A., Studnicki, A., Szajnar, J. (2017). Reinforcing cast iron with composite insert. Archives Of Metallurgy And Materials, 62(1), 355-357, doi: 10.1515/amm-2017-0054.
Ehman, Z., Kifor, V.C. (2016). An Ontology to Support Semantic Management of FMEA Knowledge. International Journal of Computers Communications & Control, 11(4), 507-521, doi: 10.15837/ijccc.2016.4.1674.
Fabiś-Domagała, J., Momeni, H., Domagała, M., Filo, G. (2019a). Matrix FMEA Analysis as a Preventive Method for Quality Design of Hydraulic Components. System Safety: Human - Technical Facility - Environment, 2019, 1(1), 684-691, doi: 10.2478/czoto-2019-0087.
Fabiś-Domagała, J., Momeni, H., Domagała, M., Filo, G., Bikass, S., Lempa, P. (2019b). Matrix FMEA Analysis of the Flow Control Valve. Conference Quality Production Improvement – CQPI, 1(1), 590-595. doi: 10.2478/cqpi-2019-0079.
Hamrol, A. (2017). Zarządzanie i inżynieria jakości. Warszawa, PL: Wydawnictwo Naukowe PWN.
Johnson, K.G., Khan, M.K. (2003). A study into the use of the process failure mode and effects analysis (PFMEA) in the automotive industry in the UK. Journal of Materials Processing Technology, 139(1-3), 348-356, doi: 10.1016/S0924-0136(03)00542-9.
Kardas, E., Brozova, S., Pustejovska, P., Jursova, S. (2017). The evaluation of efficiency of the use of machine working time in the industrial company - case study. Management Systems In Production Engineering, 25(4), 241-245, doi: 10.1515/mspe-2017-0034.
Klefsjö, B., Bergquist, B., Garvare, R. (2008) Quality management and business excellence, customers and stakeholders. Do we agree on what we are talking about, and does it matter?. The TQM Journal, 20(2), 120-129. doi: 10.1108/17542730810857354.
Klimecka-Tatar, D., Ingaldi, M. (2020). How to Indicate the Areas for Improvement in Service Process - the Knowledge Management and Value Stream Mapping as the Crucial Elements of the Business Approach. Revista Gestao & Tecnologia-Journal of Management and Technology, 20(2), 52-74, doi: 10.20397/2177-6652/2020.v20i2.1878.
Knop, K. (2017). Analysis of Risk of Nonconformities and Applied Quality Inspection Methods in the Process of Aluminium Profiles Coating Based on FMEA Results. Production Engineering Archives, 16, 16-21, doi: 10.30657/pea.2017.16.04.
Kotus, M., Holota, T., Paulicek, T., Petrik, M., Sklenar, M. (2013). Quality and Reliability of Manufacturing Process in Automation of Die-Casting. In: Materials, Technologies and Quality Assurance. Book Series: Advanced Materials Research, 801, 103-107.
Krejci, L., Schindlerova, V., Bucko, M., Hlavaty, I., Mician, M. (2019). The Application of PFMEA for Roller Bearings Production. Manufacturing Technology, 19(3), 439-445, doi: 10.21062/ujep/310.2019/a/1213-2489/MT/19/3/439.
Krynke, M., Knop, K., Mielczarek, K. (2014). An identification of variables that influences on the manufactured products quality. Production Engineering Archives, 4(3), 22-25, doi: 10.30657/pea.2014.04.06.
Lee, H., Baik, J., Kim, R. (2017). Failure mode and effects analysis drastically reduced potential risks in clinical trial conduct. Drug Design, Development and Therapy, 11, 3035—3043, doi: 10.2147/DDDT.S145310.
Lijesh, K., P., Muzakkir, S., M., Hirani, H. (2016). Failure Mode and Effect Analysis of Passive Magnetic Bering. Engineering Failure Analysis, 62, 1-20, doi: 10.1016/j.engfailanal.2015.11.033.
Liu, H.-C., Liu, L., Liu, N. (2013). Risk evaluation approaches in failure mode and effects analysis: A literature review. Expert systems with applications, 40(2), 828-838, doi: 10.1016/j.eswa.2012.08.010.
Liu, H.-C., You, J.-X., Ding, X.-F., Su, Q. (2015). Improving risk evaluation in FMEA with a hybrid multiple criteria decision making method, International Journal of Quality & Reliability Management, 32(7), 763-782, doi: 10.1108/IJQRM-10-2013-0169.
Lolli, F., Ishizaka, A., Ishizaka, A., Gamberini, R., Rimini, B., Messori, M. (2015). FlowSort-GDSS - A novel group multi-criteria decision support system for sorting problems with application to FMEA. Expert Systems With Applications, 42(17-18), 6342-6349, doi: 10.1016/j.eswa. 2015.04.028.
Łańcucki, J. (2006). Podstawy kompleksowego zarządzania jakością TQM. Poznań, PL: Wydawnictwo Akademii Ekonomicznej w Poznaniu.
Mascia, A., Cirafici, A.M., Bongiovanni, A., Colotti, G., Lacerra, G.,Di Carlo, M., Digilio, F.A., Liguori, G.L., Lanati, A., Kisslinger, A. (2020). A failure mode and effect analysis (FMEA)-based approach for risk assessment of scientific processes in non-regulated research laboratories. Accreditation And Quality Assurance, DOI: 10.1007/s00769-020-01441-9.
Najafpour, Z., Hasoumi, M., Behzadi, F., Mohamadi, E., Jafary, M., Saeedi, M. (2017). reventing blood transfusion failures: FMEA, an effective assessment method. BMC Health Services Research 17, 453, doi:10.1186/s12913-017-2380-3.
Panyukov, D., Kozlovsky, V., Klochkov, Y. (2020). Development and Research FMEA Expert Team Model. International Journal Of Reliability Quality And Safety Engineering, 27(5), SI, Art No 2040015, doi: 10.1142/S021853932040015X.
Pribulova, A., Babic, J., Baricova, D. (2011). Influence of Hadfield's steel chemical composition on its mechanical properties. Chemicke Listy, 105, SI, S430-S432, suplement 4.
Sotoodeh, K. (2020). Failure Mode and Effect Analysis (FMEA) of Pipeline Ball Valves in the Offshore Industry. Journal Of Failure Analysis And Prevention, 20(4), 1175-1183, doi: 10.1007/s11668-020-00924-8.
Su, C.T., Lin, H.C., Teng, P.W., Yang, T.H. (2014). Improving the reliability of electronic paper display using FMEA and Taguchi methods: A case study. Microelectronics Reliability, 54(6-7), 1369-1377, doi: 10.1016/j.microrel.2014.02.015.
Szkoda J.(2012). Systemy zarządzania jakością w organizacjach. Warszawa, PL: Instytut Transportu Samochodowego.
Ulewicz, R., Mazur, M., Novy, F. (2019). The Impact of Lean Tools on the Level of Occupational Safety in Metals Foundries. In: 28th International Conference on Metallurgy and Materials (METAL 2019), Brno, Czech Rep., 2019, Tanger, Ostrava, 2019, 2013-2019.
Yang, Cs., Zou, Yn., Lai, Ph., Jiang, N. (2015). Data mining-based methods for fault isolation with validated FMEA model ranking. Applied Intelligence, 43(4), 913-923, doi: 10.1007/s10489-015-0674-x.
Zammori, F., Gabbrielli, R. (2012). ANP/RPN: A multi criteria evaluation of the risk priority number. Quality and Reliability Engineering International, 28(1), 85-104, doi: 10.1002/qre.1217.
Zymonik, Z., Hamrol, A., Grudowski, P. (2013). Zarządzanie jakością i bezpieczeństwem. Warszawa, PL: PWE.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Journal of Management & Technology
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Os direitos, inclusive os de tradução, são reservados. É permitido citar parte de artigos sem autorização prévia desde que seja identificada a fonte. A reprodução total de artigos é proibida. Em caso de dúvidas, consulte o Editor.