Marketing Analytics and Artificial Intelligence in the Transformation of Business Competitiveness

Authors

DOI:

https://doi.org/10.20397/2177-6652/2025.v25i3.3101

Keywords:

Inteligência Artificial; Marketing analytics; Competitividade Empresarial; Gestão Estratégica; Governança de Dados.

Abstract

Objective: The study analyzes how marketing analytics and Artificial Intelligence (AI) impact business competitiveness, highlighting benefits, challenges, and implications for strategic management. This topic is essential in an increasingly dynamic and data-driven business scenario.

Methodology: The research used a qualitative approach based on Systematic Literature Review (SLR), analyzing articles from the Web of Science and Scopus databases. The selection followed strict criteria of academic impact, prioritizing recent publications with a high H-index and Q1 classification in the SCImago Journal Rank.

Originality/Relevance: This study fills gaps in the literature by investigating how the integration of marketing analytics and AI transforms strategic decisions. The findings demonstrate the potential of these technologies to promote large-scale personalization, operational efficiency, and responsible governance practices, essential for sustainable competitiveness.

Key Results: The results indicate that AI enhances marketing analytics, enabling the transformation of large volumes of data into actionable insights, rapid decisions, and resource optimization. However, ethical challenges, such as data protection and algorithmic biases, emerge as significant barriers to responsible implementation.

Theoretical/Methodological Contributions: This article integrates theoretical and methodological perspectives on AI and marketing analytics, offering insights to align technological innovation with ethical principles and corporate strategies.

Contributions for Management: The importance of ethical and transparent practices to strengthen consumer trust, foster sustainable relationships and ensure long-term competitive advantages is highlighted.

Author Biographies

Cássio Rangel Antunes, Fundação Getúlio Vargas

Mestrando em Gestão Empresarial pela Fundação Getúlio Vargas - RJ . Possui experiência em Gestão, com ênfase em Administração Pública, principalmente nas áreas de liderança, marketing, inteligência artificial, melhoria de processos, finanças e logística.

Alessandro Bandeira de Oliveira, UNIGRANRIO

Alessandro Bandeira de Oliveira, doutorando em Administração pela UNIGRANRIO, mestre em Administração Pública pela FGV-EBABE. Mestre em Administração de Empresas pela UNIGRANRIO. Possui MBA em Gestão Pública (UFRJ). Graduado em Administração de Empresas (Centro Universitário Celso Lisboa). 

References

Akter, S., et al. (2023). Advancing algorithmic bias management capabilities in AI-driven marketing analytics research. Industrial Marketing Management, 114, 243-261. https://doi.org/10.1016/j.indmarman.2023.08.013

Andrews, M., et al. (2016). Mobile ad effectiveness: Hyper-contextual targeting with crowdedness. Marketing Science, 35(2), 218-233. https://doi.org/10.1287/mksc.2015.0905

Brock, J. K. U., & Von Wangenheim, F. (2019). Demystifying AI: What digital transformation leaders can teach you about realistic artificial intelligence. California Management Review, 61(4), 110-134. https://doi.org/10.1177/1536504219865226

Bughin, J., et al. (2018). Notes from the AI frontier: Modeling the global economic impact of AI. McKinsey Global Institute, 1-64. Available at: https://modeling-the-impact-of-ai-on-the-world-economy. Accessed on: 10 Oct. 2024.

Chui, M., Manyika, J., & Miremadi, M. (2018). What AI can and can’t do (yet) for your business. McKinsey Quarterly, 1, 97-108.

Denyer, D., & Tranfield, D. (2009). Producing a systematic review. In D. A. Buchanan & A. Bryman (Eds.), The SAGE handbook of organizational research methods (pp. 671–689). Sage.

Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116.

Davenport, T., et al. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48, 24-42. https://doi.org/10.1007/s11747-019-00696-0

Dwivedi, Y. K., et al. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002

Falgas, M. E., et al. (2008). Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. The FASEB Journal, 22(2), 338-342. https://doi.org/10.1096/fj.07-9492LSF

Garvey, M. D., Samuel, J., & Pelaez, A. (2021). Would you please like my tweet?! An artificially intelligent, generative probabilistic, and econometric-based system design for popularity-driven tweet content generation. Decision Support Systems, 144, 113497. https://doi.org/10.1016/j.dss.2021.113497

Germann, F., Lilien, G. L., & Rangaswamy, A. (2013). Performance implications of deploying marketing analytics. International Journal of Research in Marketing, 30(2), 114-128. https://doi.org/10.1016/j.ijresmar.2012.10.001

González-Pereira, B., Guerrero-Bote, V. P., & Moya-Anegón, F. (2010). A new approach to the metric of journals’ scientific prestige: The SJR indicator. Journal of Informetrics, 4(3), 379-391. https://doi.org/10.1016/j.joi.2010.03.002

Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049-1064. https://doi.org/10.1016/j.im.2016.07.004

Gupta, S., et al. (2021). Big data and firm marketing performance: Findings from knowledge-based view. Technological Forecasting and Social Change, 171, 120986. https://doi.org/10.1016/j.techfore.2021.120986

Hirsch, J. E. (2005). An index to quantify an individual's scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569-16572. https://doi.org/10.1073/pnas.0507655102

Hossain, M. A., et al. (2022). Marketing analytics capability, artificial intelligence adoption, and firms' competitive advantage: Evidence from the manufacturing industry. Industrial Marketing Management, 106, 240-255. https://doi.org/10.1016/j.indmarman.2022.08.017

Jannach, D. (2010). Recommender Systems: An Introduction. Cambridge University Press.

Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577-586. https://doi.org/10.1016/j.bushor.2018.03.007

Jürgensmeier, L., & Skiera, B. (2024). Generative AI for scalable feedback to multimodal exercises. International Journal of Research in Marketing. https://doi.org/10.1016/j.ijresmar.2024.05.005

Kerr, G., et al. (2023). Understanding the link between an IMC technology capability and organisational integration and performance. European Journal of Marketing, 57(8), 2048-2075. https://doi.org/10.1108/EJM-05-2022-0373

Kitchens, B., et al. (2018). Advanced customer analytics: Strategic value through integration of relationship-oriented big data. Journal of Management Information Systems, 35(2), 540-574. https://doi.org/10.1080/07421222.2018.1451957

Li, Y., & Ngom, A. (2015). Data integration in machine learning. In 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1665-1671). IEEE. https://doi.org/10.1109/BIBM.2015.7359925

Lyceett, M. (2013). ‘Datafication’: Making sense of (big) data in a complex world. European Journal of Information Systems, 22(4), 381-386. https://doi.org/10.1057/ejis.2013.10

Manzoor, A., et al. (2024). A review of machine learning methods for customer churn prediction and recommendations for business practitioners. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3402092

Mikalef, P., et al. (2019). Big data analytics and firm performance: Findings from a mixed-method approach. Journal of Business Research, 98, 261-276. https://doi.org/10.1016/j.jbusres.2019.01.044

Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), 103434. https://doi.org/10.1016/j.jbusres.2019.01.044

Miklošík, A., et al. (2019). Towards the adoption of machine learning-based analytical tools in digital marketing. IEEE Access, 7, 85705-85718. https://doi.org/10.1109/ACCESS.2019.2924425

Nayyar, V. (2023). The role of marketing analytics in the ethical consumption of online consumers. Total Quality Management & Business Excellence, 34(7-8), 1015-1031. https://doi.org/10.1080/14783363.2022.2139676

Nowell, L. S., et al. (2017). Thematic analysis: Striving to meet the trustworthiness criteria. International Journal of Qualitative Methods, 16(1), 1609406917733847. https://doi.org/10.1177/1609406917733847

Pagani, R. N., Kovaleski, J. L., & Resende, L. M. (2015). Methodi Ordinatio: A proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citations, and year of publication. Scientometrics, 105(3), 2109–2135. https://doi.org/10.1007/s11192-015-1744-x

Pagani, R. N., Kovaleski, J. L., & de Resende, L. M. M. (2017). Avanços na composição da Methodi Ordinatio para revisão sistemática de literatura. Ciência da Informação, 46(2). https://doi.org/10.18225/ci.inf.v46i2.1886

Pagani, R. N., Kovaleski, J. L., de Resende, L. M. M., & others. (2023). Methodi Ordinatio 2.0: Revisited under statistical estimation, and presenting Finder and RankIn. Quality & Quantity, 57(5), 4563–4602. https://doi.org/10.1007/s11135-022-01562-y

Pasquale, F. (2015). The Black Box Society: The Secret Algorithms That Control Money and Information. Harvard University Press.

Rahman, M. S., Hossain, M. A., & Abdel Fattah, F. A. M. (2022). Does marketing analytics capability boost firms' competitive marketing performance in data-rich business environments?. Journal of Enterprise Information Management, 35(2), 455-480. 10.1007/s11356-021-14303-9. https://doi.org/10.1007/s11356-021-14303-9

Rust, R. T., & Huang, M. H. (2014). The service revolution and the transformation of marketing science. Marketing Science, 33(2), 206-221. https://doi.org/10.1287/mksc.2013.0836

Siddaway, A. P., Wood, A. M., & Hedges, L. V. (2019). How to do a systematic review: A best practice guide for conducting and reporting narrative reviews, meta-analyses, and meta syntheses. Annual Review of Psychology, 70(1), 747-770. https://doi.org/10.1146/annurev-psych-010418-102803

Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence‐informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207-222. https://doi.org/10.1111/1467-8551.00375

Vermeer, S. A., et al. (2019). Seeing the wood for the trees: How machine learning can help firms in identifying relevant electronic word-of-mouth in social media. International Journal of Research in Marketing, 36(3), 492-508. https://doi.org/10.1016/j.ijresmar.2019.01.010

Wamba, S. F., et al. (2015). How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234-246. https://doi.org/10.1016/j.ijpe.2014.12.031

Wedel, M., & Kannan, P. K. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97-121. https://doi.org/10.1509/jm.15.0413

Downloads

Published

2025-06-30

How to Cite

Antunes, C. R., & Bandeira de Oliveira, A. (2025). Marketing Analytics and Artificial Intelligence in the Transformation of Business Competitiveness. Revista Gestão & Tecnologia, 25(3), 237–262. https://doi.org/10.20397/2177-6652/2025.v25i3.3101

Issue

Section

ARTIGO