Utilização da inteligência artificial na análise de sn: construção de modelos para compreender e prever o comportamento dos utilizadores

Autores

  • Natalia O. Yarets’ka Department of Higher Mathematics and Computer Applications, Khmelnytskyi National University, Ukraine
  • Liudmyla V. Borovyk Department of General Scientific and Engineering Disciplines, Bohdan Khmelnytskyi National Academy of the State Border Guard Service of Ukraine, Ukraine
  • Lilia М. Traskovetska Department of General Scientific and Engineering Disciplines, Bohdan Khmelnytskyi National Academy of the State Border Guard Service of Ukraine, Ukraine
  • Andriy O. Ramskyi Department of Higher Mathematics and Computer Applications, Khmelnytskyi National University, Ukraine
  • Olena A. Poplavskaya Department of Higher Mathematics and Computer Applications, Khmelnytskyi National University, Ukraine

Palavras-chave:

Análise de grandes volumes de dados, Aprendizagem automática em SN, Previsão da atividade do utilizador, Algoritmos de classificação, Deteção de padrões de comportamento

Resumo

Introdução: Este estudo investiga a aplicação de técnicas de inteligência artificial (IA) e análise de sentimentos para prever traços de personalidade e comportamentos a partir dos dados extensos disponíveis nas redes sociais. O objetivo é entender a dinâmica das interações dos usuários e a disseminação de conteúdo viral através de modelos baseados em IA.

Métodos: A pesquisa emprega diversas técnicas de IA e aprendizado de máquina, com foco especial em processamento de linguagem natural (PLN), para analisar dados de mídia social. A metodologia inclui análise de sentimentos para categorizar textos em respostas emocionais distintas e análise preditiva para prever tendências no engajamento dos usuários e na viralidade do conteúdo.

Resultados: Os resultados indicam que a IA pode prever efetivamente comportamentos e traços de personalidade dos usuários, como neuroticismo, que se correlaciona com maior agressividade e uso mais frequente e prolongado das redes sociais. O estudo identifica padrões e tendências-chave que influenciam as interações dos usuários nas redes sociais.

Discussão: A discussão foca nas implicações do uso da IA na análise de mídias sociais, abordando tanto os avanços tecnológicos quanto as considerações éticas do perfilamento de comportamentos dos usuários. Enfatiza a necessidade de modelos robustos capazes de manejar a complexidade e variabilidade dos dados em redes sociais.

Conclusão: A pesquisa demonstra que a IA e o aprendizado de máquina são ferramentas inestimáveis para a análise de redes sociais, fornecendo insights que podem melhorar estratégias de engajamento dos usuários e entrega de conteúdo. O estudo defende o desenvolvimento e refinamento contínuos de modelos de IA para melhor compreender e prever o comportamento dos usuários.

Referências

Abbas, M., Memon, K. A., Jamali, A. A., Memon, S., & Ahmed, A. (2019). Multinomial Naive Bayes classification model for sentiment analysis. IJCSNS International Journal of Computer Science and Network Security, 19(3), 62. DOI:10.13140/RG.2.2.30021.40169

AlBaik, M., & Al-Azhari, W. (2021). The social and the impact of COVID-19 on social behavior in streets of Amman, Jordan. Planning, 16(5), 903-913. DOI:10.18280/ijsdp.160511

Azucar, D., Marengo, D., & Settanni, M. (2018). Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis. Personality and Individual Differences, 124, 150-159. DOI:10.1016/j.paid.2017.12.018

Başaran, S., & Ejimogu, O. H. (2021). A neural network approach for predicting personality from Facebook data. Sage Open, 11(3), 21582440211032156. DOI:10.1177/21582440211032156

Bayer, J. B., Triệu, P., & Ellison, N. B. (2020). Social media elements, ecologies, and effects. Annual Review of Psychology, 71, 471-497. DOI:10.1146/annurev-psych-010419-050944

Bhattacharya, P., Phan, T. Q., Bai, X., & Airoldi, E. M. (2019). A coevolution model of network structure and user behavior: The case of content generation in online SNs. Information Systems Research, 30(1), 117-132. DOI:10.1287/isre.2018.0790

Bowden-Green, T., Hinds, J., & Joinson, A. (2021). Understanding neuroticism and social media: A systematic review. Personality and Individual Differences, 168, 110344. DOI: 10.1016/j.paid.2020.110344

Bunker, C. J., & Kwan, V. S. (2021). Do the offline and social media Big Five have the same dimensional structure, mean levels, and predictive validity of social media outcomes? Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 15(4). DOI:10.5817/CP2021-4-8

Carvalho, J., & Plastino, A. (2021). On the evaluation and combination of state-of-the-art features in Twitter sentiment analysis. Artificial Intelligence Review, 54, 1887-1936. DOI:10.1007/s10462-020-09895-6

Cheng, C., Wang, H.-y., Sigerson, L., & Chau, C.-l. (2019). Do the socially rich get richer? A nuanced perspective on SN site use and online social capital accrual. Psychological Bulletin, 145(7), 734. DOI:10.1037/bul0000198

Colombo, J., Akhter, T., Wanke, P., Azad, M., Tan, Y., Edalatpanah, S., & Antunes, J. (2023). Interplay of cryptocurrencies with financial and social media indicators: An entropy-weighted neural-MADM approach. Journal of Operational and Strategic Analytics, 1(4), 160-172. DOI:10.56578/josa01040

Dey, A. K., Alam, A. S., Alam, M. G. R., & Zaman, S. (2022). Implementation of Explainable AI in Mental Health Informatics: Suicide Data of the United Kingdom. Paper presented at the 2022 12th International Conference on Electrical and Computer Engineering (ICECE). DOI:10.1109/ICECE57408.2022.10088765

Di Martino, F., & Delmastro, F. (2023). Explainable AI for clinical and remote health applications: a survey on tabular and time series data. Artificial Intelligence Review, 56(6), 5261-5315. DOI:10.1007/s10462-022-10304-3

Durmishi, L., & Durmishi, A. (2022). A philosophical assessment of SNs impact on adolescents’ development in conditions of unlimited access to information. Futurity Philosophy, 1(2), 27-41. DOI:10.57125/FP.2022.06.30.03

Essien, A., Petrounias, I., Sampaio, P., & Sampaio, S. (2021). A deep-learning model for urban traffic flow prediction with traffic events mined from twitter. World Wide Web, 24(4), 1345-1368. DOI:10.1007/s11280-020-00800-3

Gao, Y., Wang, X., He, X., Feng, H., & Zhang, Y. (2023). Rumor detection with self-supervised learning on texts and social graph. Frontiers of Computer Science, 17(4), 174611. DOI: 10.1007/s11704-022-1531

Gerlich, M., Elsayed, W., & Sokolovskiy, K. (2023). Artificial intelligence as toolset for analysis of public opinion and social interaction in marketing: identification of micro and nano influencers. Frontiers in Communication, 8, 1075654. DOI:10.3389/fcomm.2023.1075654

Haghani, S., & Keyvanpour, M. R. (2019). A systemic analysis of link prediction in SN. Artificial Intelligence Review, 52, 1961-1995. DOI:10.1007/s10462-017-9590

Hourrane, O., & Idrissi, N. (2019). Sentiment classification on movie reviews and twitter: an experimental study of supervised learning models. Paper presented at the 2019 1st International Conference on Smart Systems and Data Science (ICSSD). https://www.academia.edu/79670648/Sentiment_Classification_on_Movie_Reviews_and_Twitter_An_Experimental_Study_of_Supervised_Learning_Models

Huguet Benavent, D., & Gandía Cabedo, J. L. (2021). Textual Analysis and Sentiment Analysis in Accounting. Revista de Contabilidad - Spanish Accounting Review, 24(2), 168–183. DOI:10.6018/rcsar.386541

Imran, M., Ofli, F., Caragea, D., & Torralba, A. (2020). Using AI and social media multimodal content for disaster response and management. Opportunities, challenges, and future directions (Vol. 57, pp. 102261): Elsevier. DOI:10.1016/j.ipm.2020.10226

Kaushik, K., Bhardwaj, A., Dahiya, S., Maashi, M. S., Al Moteri, M., Aljebreen, M., & Bharany, S. (2022). Multinomial naive bayesian classifier framework for systematic analysis of smart iot devices. Sensors, 22(19), 7318. DOI:10.3390/s22197318

Kolinets, L. (2023). International financial markets of the future: technological innovations and their impact on the global financial system. Futurity of Social Sciences, 1(3), 4-19. DOI:10.57125/FS.2023.09.20.01

Kumar, R., Ojha, A. K., Malmasi, S., & Zampieri, M. (2020). Evaluating aggression identification in social media. Paper presented at the Proceedings of the second workshop on trolling, aggression and cyberbullying. https://aclanthology.org/2020.trac-1.

Ligthart, A., Catal, C., & Tekinerdogan, B. (2021). Systematic reviews in sentiment analysis: a tertiary study. Artificial Intelligence Review, 1-57. DOI:10.1007/s10462-021-09973-3

Liu, Y., Yang, H., Sun, G., & Bin, S. (2020). Collaborative Filtering recommendation algorithm based on multi-relationship SN. Ingénierie des Systèmes d'Information, 25(3). DOI:10.1016/j.aej.2021.04.081

Liu, Z., & Song, T. (2024). Big data analysis and user behavior prediction of SNs based on artificial neural network. CIT. Journal of Computing and Information Technology, 31(3), 185-201. DOI:10.20532/cit.2023.100575

Marengo, D., & Montag, C. (2020). Digital phenotyping of big five personality via facebook data mining: a meta-analysis. Digital Psychology, 1(1), 52-64. DOI:10.24989/dp.v1i1.1823

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6), 1-35. DOI:10.1145/3457607

Meng, W., Mao, C., Zhang, J., Wen, J., & Wu, D. (2019). A fast recognition algorithm of online SN images based on deep learning. Traitement du Signal, 36(6). DOI: 10.18280/ts.360613

Pandey, B., Bhanodia, P. K., Khamparia, A., & Pandey, D. K. (2019). A comprehensive survey of edge prediction in SNs: Techniques, parameters and challenges. Expert Systems with Applications, 124, 164-181. DOI:10.1016/j.eswa.2019.01.040

Panfilova, A. S., & Turdakov, D. Y. (2024). Applying explainable artificial intelligence methods to models for diagnosing personal traits and cognitive abilities by SN data. Scientific Reports, 14(1), 5369. DOI:10.1038/s41598-024-56080-8

Pawełoszek, I., Kumar, N., & Solanki, U. (2022). Artificial intelligence, digital technologies and the future of law. Futurity Economics & Law, 2(2), 24-33. DOI: 10.57125/FEL.2022.06.25.03

Riadi, I., & Rafiq, I. A. (2022). Forensic mobile analysis on social media using national institute standard of technology method. International Journal of Safety & Security Engineering, 12(6). DOI:10.18280/ijsse.120606

Rosa, R. L., De Silva, M. J., Silva, D. H., Ayub, M. S., Carrillo, D., Nardelli, P. H., & Rodriguez, D. Z. (2020). Event detection system based on user behavior changes in online SNs: Case of the covid-19 pandemic. IEEE Access, 8, 158806-158825. DOI:10.1109/ACCESS.2020.3020391

Sadiq, S., Mehmood, A., Ullah, S., Ahmad, M., Choi, G. S., & On, B.-W. (2021). Aggression detection through deep neural model on twitter. Future Generation Computer Systems, 114, 120-129. DOI:10.1016/j.future.2020.07.050

Salsabila, G. D., & Setiawan, E. B. (2021). Semantic approach for big five personality prediction on twitter. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(4), 680-687. DOI:10.29207/resti.v5i4.3197

Shahbaznezhad, H., Dolan, R., & Rashidirad, M. (2021). The role of social media content format and platform in users’ engagement behavior. Journal of Interactive Marketing, 53(1), 47-65. DOI:10.1016/j.intmar.2020.05.001

Sharma, S., & Jain, A. (2023). Hybrid ensemble learning with feature selection for sentiment classification in social media Research Anthology on Applying SNing Strategies to Classrooms and Libraries (pp. 1183-1203). IGI Global. DOI:10.4018/IJIRR.2020040103

Sheikhi, S. (2020). An efficient method for detection of fake accounts on the instagram platform. Revue d'Intelligence Artificielle, 34(4). DOI:10.18280/ria.340407

Shetty, S. D. (2021). Sentiment analysis, tweet analysis and visualization on big data using Apache Spark and Hadoop. Paper presented at the IOP Conference Series: Materials Science and Engineering. DOI:10.1088/1757-899X/1099/1/012002

Shu, K., Bhattacharjee, A., Alatawi, F., Nazer, T. H., Ding, K., Karami, M., & Liu, H. (2020). Combating disinformation in a social media age. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(6), e1385. DOI:10.1002/widm.1385

Sofilkanych, N., Vesova, O., Kaminskyy, V., & Kryvosheieva, A. (2023). The impact of artificial intelligence on Ukrainian medicine: benefits and challenges for the future. Futurity Medicine, 2(4), 28-39. DOI: 10.57125/FEM.2023.12.30.04

Vaid, S. S., & Harari, G. M. (2021). Who uses what and how often?: Personality predictors of multiplatform social media use among young adults. Journal of Research in Personality, 91, 104005. DOI:10.1016/j.jrp.2020.104005

Villegas-Ch, W., Molina, S., Janón, V. D., Montalvo, E., & Mera-Navarrete, A. (2022). Proposal of a Method for the Analysis of Sentiments in SNs with the Use of R. Paper presented at the Informatics. DOI:10.3390/informatics9030063

Yang, M., Zhang, S., Zhang, H., & Xia, J. (2019). A new user behavior evaluation method in online SN. Journal of Information Security and Applications, 47, 217-222. DOI:10.2139/ssrn.4074509

Yu, S., Xia, F., Zhang, C., Wei, H., Keogh, K., & Chen, H. (2021). Familiarity-based collaborative team recognition in academic SNs. IEEE Transactions on Computational Social Systems, 9(5), 1432-1445. https://arxiv.org/pdf/2204.02667

Yuliansyah, H., Othman, Z. A., & Bakar, A. A. (2020). Taxonomy of link prediction for SN analysis: a review. IEEE Access, 8, 183470-183487. DOI:10.1109/ACCESS.2020.3029122

Zheng, H., & Ling, R. (2021). Drivers of social media fatigue: A systematic review. Telematics and Informatics, 64, 101696. DOI: 10.1016/j.tele.2021.101696

Zulfikar Alom, M., Carminati, B., & Ferrari, E. (2020). A deep learning model for Twitter spam detection. Online SNs and Media, 18, 1-12. DOI: 10.1016/j.osnem.2020.100079

Downloads

Publicado

2024-03-10

Como Citar

Yarets’ka, N. O., Borovyk, L. V., Traskovetska L. М., Ramskyi, A. O., & Poplavskaya, O. A. (2024). Utilização da inteligência artificial na análise de sn: construção de modelos para compreender e prever o comportamento dos utilizadores. Revista Gestão & Tecnologia, 24, 287–303. Recuperado de https://revistagt.fpl.emnuvens.com.br/get/article/view/2879

Edição

Seção

ARTIGO