Group properties of the finite-dimensional linearization operator of a dynamical system in the model of orbital tether system motion

Authors

  • Mikhail Lapir Peoples’ Friendship University of Russia (RUDN University)

DOI:

https://doi.org/10.20397/2177-6652/2023.v23i0.2600

Keywords:

group approach, symplectic structure, quadratic invariant, linear Hamiltonian system, Lie algebra

Abstract

The article considers an autonomous linear dynamical system represented by ordinary differential equations that define the motion of an orbital tether system. The object of the study are group properties of the spectrum of a finite-dimensional linearization operator, which smoothly depends on the control parameter k, in the case of general position – without degeneracy. Conditions are defined under which there emerges a group of symplectomorphisms generating in a linear system the first integral in the form of a nondegenerate quadratic form – Hamilton functions. The existence of a symplectic structure and a quadratic invariant in a dynamical system allows to reduce it on the basis of the variational principle to a divergent Hamiltonian form of the equations of motion with the linearization operator represented in a certain "canonical" form. The distinguished category of systems with a single invariant allows both to construct a Lie algebra of the corresponding Lie group and to move on to the study of stability and gyroscopic stabilization in a mechanical system

References

Arnold, V. I. (2012). Obyknovennye differentsialnye uravneniia [Ordinary differential equations]. New Edition, Revised – Moscow: Moscow Center for Continuous Mathematical Education.

Beletsky, V. V., & Levin, E. M. (1993). Dynamics of Space Tether Systems. In Advances in Astronautical Sciences. San Diego: Univelt Inc. Publ.

Buchshtaber, V. M., & Panov, T. E. (2020). Deistviia torov, kombinatornaia topologiia i gomologicheskaia algebra [Torus actions, combinatorial topology and homological algebra]. Russian Mathematical Surveys, 55(5), 3-106.

Buchstaber, V.M., Panov, T.E. (2015). Toric Topology. Mathematical Surveys and Monographs, 204, 518.

Dadashov, Ch. M., & Lapir, M. A. (2020). Razrabotka i issledovanie modeli dvizheniia orbitalnoi trosovoi sistemy s uchetom inertnykh svoistv trosa [Development and study of a motion model of an orbital tether system taking into account the inertial properties of the tether]. Innovations and Investments, 8, 147-150.

de Leon, M., & Rodrigues, P. R. (1989). Methods of differential geometry in analytical mechanics. Amsterdam: North-Holland Publishing Co.

Galiullin, A.S. (1988). Generalizations of Hamiltonian Systems. Differ. Equ., 24(5), 483-490.

Gorbatsevich, V. V. (2004). Ob algebraicheskikh diffeomorfizmakh Anosova na nilmnogoobraziiakh [On Algebraic Anosov Diffeomorphisms on Nilmanifolds]. Siberian Mathematical Journal, 45(5), 995-1021.

Gorbauevich, V. V. (2022). Ob izomorfizme i diffeomorfizme kompaktnykh poluprostykh grupp Li [On isomorphism and diffeomorphism of compact semi-simple Lie groups]. Mathematical Notes, 112(3), 384-390. https://doi.org/10.4213/mzm13158

Kozlov, V. V. (1992). Lineinye sistemy s kvadratichnym integralom [Linear systems with a quadratic integral]. Journal of Applied Mathematics and Mechanics, 56(6), 900-906.

Kozlov, V. V. (2013). Zamechaniia ob integriruemykh sistemakh [Remarks on integrable systems]. Russian Journal of Nonlinear Dynamics, 9(3), 459-478.

Kozlov, V. V. (2018). Linear Hamiltonian systems: Quadratic integrals, singular subspaces and stability. Regular and Chaotic Dynamics, 23(1), 26-46.

Kozlov, V. V. (2019). Multi-Hamiltonian property of a linear system with quadratic invariant. St. Petersburg Mathematical Journal, 30(5), 877-883.

Kozlov, V. V. (2020). The stability of circulatory Systems. Dokl. Phis., 65(9), 323-325.

Kozlov, V. V. (2021). On the instability of equilibria of mechanical systems in nonpotential force field in the case of typical degeneracies. Acta mechanica, 232(9), 3331-3341.

Kozlov, V. V. (2022). On the Integrability of Circulatory Systems. Regular and chaotic Dynamics, 27(1), 11-17.

Mimura, M., Toda, H. (1991). Topology of Lie Groups, I and II. Providence: American Mathematical Society.

Neishtadt, A. I., & Treschev, D. V. (2021). Dynamical phenomen connected with stability loss of equilibria and periodic trajectories. Russian Mathematical Surveys, 76(5), 883-926.

Perelomov, A. M. (1990). Integrabble Systems of classical mechanics and Lie Algebras. Basel: Birkhäuser. https://doi.org/10.1007/978-3-0348-9257-5

Treshchev, D. V., & Shkalikov, A. A. (2017). O gamiltovosti lineinykh dinamicheskikh sistem v gilbertovom prostranstve [On the Hamiltonianity of Linear Dynamical Systems in Hilbert Space]. Mathematical Notes, 101(6), 911-918.

van der Waerden, B. L. (1976). Uravnenie Pellia v matematike grekov i indiitsev [Pell’s equation in Greek and Hindu Mathematics]. Russian Mathematical Surveys, 31(5), 57-70.

Yu, B. S., Wen, H., & Jin, D. F. (2018). Review of deployment technology for tethered satellite systems. Acta Mechanica Sinica, 34(4), 754-768. https://doi.org/10.1007/s10409-018-0752-5

Zheglov, A. B., Osipov, D. V., & Pary, L. (2019). Laksa dlia lineinykh sistem [Lax pairs for linear systems]. Siberian Mathematical Journal, 60(4), 760-776. https://doi.org/10.33048/smzh.2019.60.405

Downloads

Published

2023-09-06

How to Cite

Lapir, M. (2023). Group properties of the finite-dimensional linearization operator of a dynamical system in the model of orbital tether system motion. Journal of Management & Technology, 23, 174–197. https://doi.org/10.20397/2177-6652/2023.v23i0.2600