The AI-Based Leadership Method: fostering symbiotic integration of Artificial Intelligence into management practices

Autores

DOI:

https://doi.org/10.20397/2177-6652/2025.v25i3.2810

Palavras-chave:

Artificial Intelligence; Symbiotic Integration; Data Science; Management.

Resumo

Objective: To present the AI-Based Leadership Method, a novel method for integrating Artificial Intelligence (AI) into Business Management practices, based on the experience of data scientists in large data-driven organizations.

Methodology: Qualitative, using Actor-Network Theory (ANT) as the theoretical-methodological approach.

Originality: The proposed method fills a theoretical gap in the management literature, offering a systematic approach to the symbiotic integration of AI into leadership and management practices.

Main results: Description of a methodology that encompasses the definition of collaborative contexts, the formation of symbiotic teams, the synchronization of knowledge, the automation of supervision, the optimization of decision-making through hybrid committees, and the promotion of a continuous feedback cycle.

Theoretical/methodological contributions: The proposed method offers a future-oriented perspective on promoting a productive partnership between humans and artificial intelligence in the workplace, highlighting the importance of balanced integration of AI into management activities.

 

Biografia do Autor

Wellington Rodrigo Monteiro, Universidade Positivo

Wellington Rodrigo Monteiro holds a Ph.D. in Industrial and Systems Engineering from PUCPR (Pontifical Catholic University of Parana), a Master's in Industrial and Systems Engineering from PUCPR, and a Bachelor's in Computer Engineering from PUCPR. He has over ten years of experience working as a data scientist and machine learning engineer in large international corporations and startups. His interests are rooted in the adoption and perception of artificial intelligence inside organizations.

Eduardo André Teixeira Ayrosa, Universidade Positivo Programa de Pós-Graduação em Administração Curitiba, Brasil

Eduardo Ayrosa holds a Ph.D. in Management from the London Business School (University of London), a Master's degree in Management from UFRJ (Federal University of Rio de Janeiro), and a Bachelor's in Civil Engineering from the UFRJ. Specializing in Management, his emphasis lies in Consumer Studies, Marketing, and Epistemology and Research Methodology. In the realm of Epistemology and Research Methodology, his interests are rooted in the philosophy of social sciences and interpretative research methods.

Referências

Adams, T. E., Jones, S. H., & Ellis, C. (2015). Autoethnography. New York, Estados Unidos: Oxford University Press.

Al-Surmi, A., Bashiri, M., & Koliousis, I. (2022). AI based decision making: combining strategies to improve operational performance. International Journal of Production Research, 60(14), 4464–4486.

Barker, M., Kallina, E., Ashok, D., Collins, K., Casovan, A., Weller, A., ... Bhatt, U. (2023). Feedbacklogs: Recording and incorporating stakeholder feedback into machine learning pipelines. In Proceedings of the 3rd ACM conference on equity and access in algorithms, mechanisms, and optimization. New York, NY, USA: Association for Computing Machinery.

Bhat, M., Shumaiev, K., Hohenstein, U., Biesdorf, A., & Matthes, F. (2020). The evolution of architectural decision making as a key focus area of software architecture research: A semisystematic literature study. In 2020 IEEE International Conference on Software Architecture (ICSA) (p. 69-80). doi: 10.1109/ICSA47634.2020.00015

Borch, C. (2023). Machine learning and postcolonial critique: Homologous challenges to sociological notions of human agency. Sociology. doi: 10.1177/00380385221146877

Borges, A. F., Laurindo, F. J., Spínola, M. M., Gonçalves, R. F., & Mattos, C. A. (2021). The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions. International Journal of Information Management, 57, 102225.

Braga, C., & Suarez, M. (2018, 06). Teoria Ator-Rede: novas perspectivas e contribuições para os estudos de consumo. Cadernos EBAPE.BR, 16, 218-231.

Callon, M., Law, J., & Rip, A. (1986). Mapping the dynamics of science and technology: Sociology of science in the real world. Londres, Reino Unido: Palgrave Macmillan UK. doi: 10.1007/ 978-1-349-07408-2

Camillis, P. K. D., Bussular, C. Z., & Antonello, C. S. (2016, 03). A agencia a partir da Teoria Ator-Rede: reflexões e contribuições para as pesquisas em Administração. Organizações e Sociedade, 23, 73-91.

Cortes, G. M., & Forsythe, E. (2023). Heterogeneous labor market impacts of the COVID-19 pandemic. ILR Review, 76(1), 30–55.

Davenport, T., & Mittal, N. (2023). All-in on AI: How smart companies win big with artificial intelligence. Harvard Business Review Press.

De Smet, A. (2018). The Agile Manager. The McKinsey Quarterly, 3, 76–81.

Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... Williams, M. D. (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994.

Fabijan, A., Dmitriev, P., Olsson, H. H., & Bosch, J. (2017). The evolution of continuous experimentation in software product development: From data to a data-driven organization at scale. In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE) (p. 770-780). doi: 10.1109/ICSE.2017.76

Finkelstein Shapiro, A., Nuguer, V., & Novoa Gomez, S. (2024). Labor market and macroeconomic dynamics in Latin America amid COVID: The role of digital-adoption policies. The World Bank Economic Review, 38(1), 161–184.

Fuller, J., Hutter, K., Wahl, J., Bilgram, V., & Tekic, Z. (2022). How AI revolutionizes innovation management – perceptions and implementation preferences of AI-based innovators. Technological Forecasting and Social Change, 178. doi: 10.1016/j.techfore.2022.121598

Ghatak, R. (2022). Metrics, measurement, scorecards and power of visual intelligence. In People analytics: Data to decisions (pp. 175–189). Singapore: Springer Nature Singapore. doi: 10.1007/978-981-19-3873-3 11

Hansen, H. K., & Flyverbom, M. (2015). The politics of transparency and the calibration of knowledge in the digital age. Organization, 22(6), 872 – 889. doi: 10.1177/ 1350508414522315

Hooi, L. W. (2012). Enhancing employee satisfaction: an analysis of current promotion practices. International Journal of Management Practice, 5(3), 245–269.

Hopkins, A., & Booth, S. (2021). Machine learning practices outside big tech: How resource constraints challenge responsible development. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (p. 134–145). New York, NY, USA: Association for Computing Machinery.

Jansen, A., Avgeriou, P., & van der Ven, J. S. (2009). Enriching software architecture documentation. Journal of Systems and Software, 82(8), 1232-1248. (SI: Architectural Decisions and Rationale)

Kilkenny, M. F., & Robinson, K. M. (2018). Data quality: “garbage in – garbage out”. Health Information Management Journal, 47(3), 103-105. (PMID: 29719995) doi: 10.1177/ 1833358318774357

Kreuzberger, D., Kuhl, N., & Hirschl, S. (2023). Machine learning operations (MLOps): Overview, definition, and architecture. IEEE Access, 11, 31866-31879. doi: 10.1109/ACCESS.2023.3262138

Lacruz, A. J., Américo, B. L., & Carniel, F. (2017, 07). Teoria ator-rede em estudos organizacionais: análise da produção científica no Brasil. Cadernos EBAPE.BR, 15, 574-598.

Latour, B. (2007). Reassembling the social: An introduction to actor-network-theory. OUP Oxford.

Law, J. (1992). Notes on the theory of the actor-network: Ordering, strategy, and heterogeneity. Systems Practice, 5(4), 379-393.

Lee, N., & Stenner, P. (1999). Who pays? Can we pay them back? The Sociological Review,

(1 suppl), 90-112. doi: 10.1111/j.1467-954X.1999.tb03484.x

Lopes, H., Lagoa, S., & Calapez, T. (2014). Work autonomy, work pressure, and job satisfaction: An analysis of European Union countries. The Economic and Labour Relations Review, 25(2), 306–326.

Monteiro, W. R., & Reynoso-Meza, G. (2023). A review of the convergence between explainable artificial intelligence and multi-objective optimization. Authorea Preprints.

Murray, A., Rhymer, J., & Sirmon, D. G. (2021, Jul). Humans and technology: Forms of conjoined agency in organizations. Academy of Management Review, 46(3), 552-571. doi: 10.5465/ amr.2019.0186

Oliveira, V. M. d., & Valadão, J. d. A. D. (2017, 12). Entre a simplificação e a complexidade, a heterogeneidade: Teoria Ator-Rede e uma nova epistemologia para os estudos organizacionais. Cadernos EBAPE.BR, 15, 877-899.

O’Meara, S., & Cooper, C. (2022). Remote workplace culture: How to bring energy and focus to remote teams. Kogan Page.

Pan, Y., Froese, F., Liu, N., Hu, Y., & Ye, M. (2022, Mar 26). The adoption of artificial intelligence in employee recruitment: The influence of contextual factors. International Journal of Human Resource Management, 33(6, SI), 1125-1147. doi: 10.1080/09585192.2021.1879206

Pollack, J., Costello, K., & Sankaran, S. (2013). Applying actor-network theory as a sensemaking framework for complex organisational change programs. International Journal of Project Management, 31(8), 1118 – 1128. doi: 10.1016/j.ijproman.2012.12.007

Rahman, A. (2023). Data collection, wrangling, and pre-processing for AI assurance. In AI assurance (pp. 321–338). Elsevier.

Raisch, S., & Fomina, K. (2023). Combining human and artificial intelligence: Hybrid problem solving in organizations. Academy of Management Review(ja), amr–2021.

Rastogi, A., Thummalapenta, S., Zimmermann, T., Nagappan, N., & Czerwonka, J. (2017). Ramp-up journey of new hires: Do strategic practices of software companies influence productivity? In Proceedings of the 10th Innovations in Software Engineering Conference (p. 107–111). New York, NY, USA: Association for Computing Machinery. doi: 10.1145/3021460.3021471

Rath, M., & Mader, P. (2020). Request for comments: conversation patterns in issue tracking systems of open-source projects. In Proceedings of the 35th Annual ACM Symposium on Applied Computing (pp. 1414–1417).

Russell, S. J., & Norvig, P. (2021). Artificial intelligence: A modern approach. Hoboken, Estados Unidos: Pearson.

Sarlak, M. A., Salamzadeh, Y., & Farzad, F. S. (2020). Actor-network theory and networked organizations, proposing a conceptual framework [Book chapter]. Springer. doi: 10.1007/ 978-981-15-7066-7 11

Schermerhorn, J., & Bachrach, D. (2020). Management. Wiley.

Schroer, C., Kruse, F., & Gomez, J. M. (2021). A systematic literature review on applying CRISP-DM process model. Procedia Computer Science, 181, 526–534.

Simon, P. (2021). Reimagining collaboration: Slack, Microsoft Teams, Zoom, and the post-COVID world of work. Motion Publishing.

Theunissen, T., van Heesch, U., & Avgeriou, P. (2022). A mapping study on documentation in continuous software development. Information and Software Technology, 142, 106733.

Tonelli, D. F. (2016, 06). Origens e afiliações epistemológicas da Teoria Ator-Rede: implicações para a análise organizacional. Cadernos EBAPE.BR, 14, 377-390.

Trunk, A., Birkel, H., & Hartmann, E. (2020). On the current state of combining human and artificial intelligence for strategic organizational decision making. Business Research, 13(3), 875–919.

Turulja, L., Vugec, D. S., & Bach, M. P. (2023). Big data and labour markets: A review of research topics. Procedia Computer Science, 217, 526–535.

van Rijmenam, M., & Logue, D. (2021). Revising the ‘science of the organisation’: theorising AI agency and actorhood. Innovation: Organization and Management, 23(1), 127 – 144. doi: 10.1080/14479338.2020.1816833

Vredenburgh, K. (2022). Freedom at work: understanding, alienation, and the AI-driven workplace. Canadian Journal of Philosophy, 52(1), 78–92.

Warner, K. S. R., & Waeger, M. (2019, Jun). Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal. Long Range Planning, 52(3), 326-349. doi: 10.1016/j.lrp.2018.12.001

Whang, S. E., Roh, Y., Song, H., & Lee, J.-G. (2023). Data collection and quality challenges in deep learning: A data-centric AI perspective. The VLDB Journal, 32(4), 791–813.

Zuill, W., & Meadows, K. (2016). Mob programming: A whole team approach. In Agile 2014 Conference, Orlando, Florida (Vol. 3).

Downloads

Publicado

2025-06-30

Como Citar

Monteiro, W. R., & Ayrosa, E. A. T. (2025). The AI-Based Leadership Method: fostering symbiotic integration of Artificial Intelligence into management practices. Revista Gestão & Tecnologia, 25(3), 263–285. https://doi.org/10.20397/2177-6652/2025.v25i3.2810

Edição

Seção

ARTIGO