Artificial Intelligence and its Business Implications In The Automotive Industry

Autores

  • Matúš Senci Faculty of Operation and Economics of Transport and Communications
  • Sheshadri Chatterjee Indian Institute of Technology Kharagpur: Kharagpur, West Bengal, IN https://orcid.org/0000-0003-1075-5549

DOI:

https://doi.org/10.20397/2177-6652/2025.v25i4.3280

Palavras-chave:

Artificial intelligence, Financial indicators, Sales, Automotive, Industry

Resumo

Objective: To verify whether the use of AI technology affects important financial metrics, such as sales, year-on-year sales differences, return on equity (ROE), and net income after tax (EAT), in a statistically significant way.

Methodology: Using publicly available annual reports from 2003 to 2023, this study analyzes the financial and economic effects of AI implementation in a subset of automakers: Mercedes-Benz, Audi, and Volkswagen. The Shapiro-Wilk test and ANOVA or Kruskal-Wallis tests, depending on the characteristics of the distribution, were used to determine if the data distribution was normal, using IBM SPSS software.

Originality/Relevance: Artificial intelligence (AI) in industrial environments is fundamentally altering how companies operate, especially in the automotive industry.

Main Results: The results indicate that, although the impacts vary depending on the organization and the metric, AI integration is associated with statistically significant changes in financial variables. These results point to the potential benefits of AI for business performance in the automotive sector, but also emphasize the need for customized implementation plans for all companies.

Theoretical/methodological contributions: This study describes important areas where the future development of AI could provide significant strategic and operational advantages and concludes with practical suggestions for optimizing its use.

 

Biografia do Autor

Sheshadri Chatterjee, Indian Institute of Technology Kharagpur: Kharagpur, West Bengal, IN

O Sr. Chatterjee trabalhou como professor convidado, adjunto e professor visitante em diversos institutos e universidades de renome, incluindo o IIT Delhi; Instituto Nacional de Engenharia Industrial (NITIE), Mumbai; Instituto de Gestão de Projetos (PMI) Bangalore; SBIM Bangalore; Instituto Aryabhatt de Engenharia e Tecnologia, etc. Profissionalmente, o Sr. Chatterjee trabalhou na Hewlett Packard (HP) Corporation; IBM Global Business Services, em parceria com a Statoil Corporation da Dinamarca; Royal Dutch Shell; Lenovo Corporation, etc. Sua experiência profissional abrange diversos países, tendo visitado os EUA, Austrália, Nova Zelândia, Indonésia, Malásia e Hong Kong.

O Sr. Chatterjee publicou pesquisas em periódicos internacionais. Seus interesses de pesquisa atuais estão nas áreas de Gestão de TI, Marketing Digital, Analytics, E-commerce, Computação em Nuvem, Gestão do Conhecimento, Engenharia de Software, Gestão de Projetos e Portfólios, Experiência do Usuário, Economia Gerencial, Mercados Emergentes, Gestão da Qualidade e Operações e Gestão da Mudança.

Referências

Beinabadi, H. Z., Baradaran, V., & Komijan, A. R. Sustainable supply chain decision-making in the automotive industry: A data-driven approach. Socio-economic planning sciences 2024. 95.

Broady. K. E.. Booth-Bell. D.. Barr. A.. & Meeks. A. Automation. artificial intelligence. and job displacement in the US. 2019–22. Labor History 2025. 1-17.

Dorsch. J.. & Deroy. O. The impact of labeling automotive AI as trustworthy or reliable on user evaluation and technology acceptance. Scientific Reports 2025. 15(1).

Era. C. A. A.. Rahman. M.. & Alvi. S. T. Artificial Intelligence of Things (AIoT) Technologies. Benefits and Applications. In 2024 4th International Conference on Emerging Smart Technologies and Applications (eSmarTA). August 2024.

Forero, L. A. F., Vargas, G. A. D., Valencia, S. G., Ayala, J. J., & Barbosa, J. M. V. Improvement of the Control and Surveillance Process for Automotive Diagnostic Centers through the Development of a Computer Vision and Deep Learning-based Software. International Journal of Pattern Recognition and Artificial Intelligence 2025. 39(9).

Frank. D. A.. Jacobsen. L. F.. Søndergaard. H. A.. & Otterbring. T. In companies we trust: consumer adoption of artificial intelligence services and the role of trust in companies and AI autonomy. Information Technology & People 2023. 36(8). 155-173.

Gu. H.. Liang. B.. & Cao. H. User-centered framework for assessing the performance of smart car cockpits. The International Journal of Advanced Manufacturing Technology 2024. 1-14.

Gupta, I., Martinez, A., Correa, S., & Wicaksono, H. A comparative assessment of causal machine learning and traditional methods for enhancing supply chain resiliency and efficiency in the automotive industry. Supply Chain Analytics 2025. 10.

Hessami. A. G.. Kriebitz. A.. Weger. G.. Watson. E. N.. & Shaw. P. Artificial Intelligence for the Benefit of Everyone. Computer 2024. 57(9). 68-79.

Hossain, M. N. Artificial Intelligence Revolutionising the Automotive Sector: A Comprehensive Review of Current Insights, Challenges, and Future Scope. Challenges, and Future Scope 2024. 82(3). 3643-3692.

Hossain. M. N.. Rahman. M. M.. & Ramasamy. D. Advances in intelligent vehicular health monitoring and fault diagnosis: techniques. technologies. and future directions. Measurement 2025. 253.

Huang, C. K., & Lin, J. S. Firm Performance on Artificial Intelligence Implementation. Managerial and Decision Economics 2025. 46(3), 1856-1870.

Jindal. J. A.. Lungren. M. P.. & Shah. N. H. Ensuring useful adoption of generative artificial intelligence in healthcare. Journal of the American Medical Informatics Association 2024. 31(6).

Khushk. A.. Zhiying. L.. Yi. X.. & Aman. N. AI-driven HR transformation in Chinese automotive industry: strategies and implications. Business Process Management Journal 2025.

Kim, H., Kim, E., Ahn, S., Kim, B., Kim, S. J., Sung, T. K., & Dong, G. KRID: A Large-Scale Nationwide Korean Road Infrastructure Dataset for Comprehensive Road Facility Recognition. Data 2025, 10(3), 36.

Kumar, V., Kumar, S., Chatterjee, S., & Mariani, M. Artificial intelligence (AI) capabilities and the R&D performance of organizations: the moderating role of environmental dynamism. In IEEE Transactions on Engineering Management 2024. 71, 11522-11532.

Madan. R.. & Ashok. M. Making sense of AI benefits: a mixed-method study in Canadian public administration. Information Systems Frontiers 2024. 1-35.

Morales Matamoros. O.. Takeo Nava. J. G.. Moreno Escobar. J. J.. & Ceballos Chávez. B. A. Artificial intelligence for quality defects in the automotive industry: A systemic review. Sensors 2025. 25(5).

Ramos. R.. Casaca. J.. & Patrício. R. Adoption Drivers of Intelligent Virtual Assistants in Banking: Rethinking the Artificial Intelligence Banker. Computers 2025. 14(6). 209.

Rana, K., & Khatri, N. Automotive intelligence: Unleashing the potential of AI beyond advance driver assisting system, a comprehensive review. Computers and Electrical Engineering 2024. 117.

Roppelt. J. S.. Jenkins. A.. Kanbach. D. K.. Kraus. S.. & Jones. P. Effective adoption of artificial intelligence in healthcare: A multiple case study. Journal of decision systems 2025. 34(1).

Sharma. S. Benefits or concerns of AI: A multistakeholder responsibility. Futures 2024. 157.

Soresini. F.. Barri. D.. Cazzaniga. I.. Ballo. F. M.. Mastinu. G.. & Gobbi. M. Artificial Intelligence for Fault Detection of Automotive Electric Motors. Machines 2025. 13(6).

Stamkou, C., Saprikis, V., Fragulis, G. F., & Antoniadis, I. User Experience and Perceptions of AI-Generated E-Commerce Content: A Survey-Based Evaluation of Functionality, Aesthetics, and Security. Data 2025, 10(6), 89.

Stollenwerk. T.. Bhattacharya. S.. Cattelan. M.. Ciani. A.. Compostella. G.. Headley. D.. ... & Wilhelm. F. K. Q (AI) 2: Quantum Artificial Intelligence for the Automotive Industry. KI-Künstliche Intelligenz 2024. 1-9.

Surugiu. C.. Grădinaru. C.. & Surugiu. M. R. Artificial intelligence in business education: Benefits and tools. Amfiteatru Economic 2024. 26(65). 241-258.

Vuong, Q. H., La, V. P., Nguyen, T. H. T., Nguyen, M. H., Le, T. T., & Ho, M. T. An AI-enabled approach in analyzing media data: an example from data on COVID-19 news coverage in Vietnam. Data 2021, 6(7), 70.

Xu. G.. Li. X.. Li. S.. & Tong. Y. Artificial intelligence adoption and credit ratings. Asia-Pacific Journal of Accounting & Economics 2024. 1-15.

Yan. H. Automotive Safety‐Assisted Driving Technology Based on Computer Artificial Intelligence Environment. IEEJ Transactions on Electrical and Electronic Engineering 2025. 20(4). 634-646.

Yan. X.. & Sun. T. Artificial Intelligence Development and Carbon Emission Intensity: Evidence from Industrial Robot Application. Sustainability 2025. 17(9).

Yang. J.. Blount. Y.. & Amrollahi. A. Artificial intelligence adoption in a professional service industry: A multiple case study. Technological Forecasting and Social Change 2024. 201.

Zhou. L.; Miller. J.; Vezza. J.; Mayster. M.; Raffay. M.; Justice. Q.; Al Tamimi. Z.; Hansotte. G.; Sunkara. L.D.; Bernat. J. Additive Manufacturing: A Comprehensive Review. Sensors 2024. 24.

Audi AG. Annual Reports. 2024. www.audi.com

Mercedes-Benz Group AG. Annual Reports. 2024. www.mercedes-benz.com

Volkswagen AG. Annual Reports. 2024. www.vw.com

Downloads

Publicado

2025-11-01

Como Citar

Senci, M., & Chatterjee, S. (2025). Artificial Intelligence and its Business Implications In The Automotive Industry. Revista Gestão & Tecnologia, 25(4), 34–56. https://doi.org/10.20397/2177-6652/2025.v25i4.3280

Edição

Seção

ARTIGO