Application of recurrent and deep neural networks in classification tasks
DOI:
https://doi.org/10.20397/2177-6652/2020.v20i3.1709Palavras-chave:
Redes Neurais Profundas, Classificação de Dados, Inteligência ArtificialResumo
As Redes Neurais Artificiais (RNAs) tem sido utilizadas nas soluções de variados problemas, dentre eles, os que envolvem tomada de decisões. Neste escopo, o objetivo desta pesquisa é apresentar uma ferramenta que dê suporte ao processo de decisão para seleção de cultivares de vinho e avaliação de carros, por meio da utilização de RNAs multilayer perceptron, profundas e recorrentes. Verificando-se sua eficácia e a melhor convergência, por meio do Modelo de Validação Cruzada. Os resultados elencados indicam a eficiência da técnica, para ambos os problemas, haja vista que a capacidade de generalização das RNAs testadas para o dataset wine foi em média de 85,58% utilizando a arquitetura de 3 camadas, 86,58% para a rede profunda e 93,53% para a rede recorrente, e para o dataset car evaluation foi em média de 93,71% utilizando a rede recorrente.
Referências
Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2006). Greedy layer-wise training of deep networks. In B. Schölkopf, J. C. Platt & T Hoffman (Eds.). Advances in Neural Information Processing Systems 19 (pp. 153-160). San Diego: Neural Information Processing Systems Fundations.
Chatziagorakis, P., Georgoulas, N., Papadopoulou, S., Elmasides, C., Giaouris, D., Seferlis, P., Sirakoulis, Ch. G., Karafyllidis, I., Papadopoulos, A. I., Stergiopoulos, F., Ziogou, C., Ipsakis, D., Voutetakis, S., & Andreadis, I. (2014). Application of neural networks solar radiation prediction for hybrid renewable energy systems. Engineering Applications of Neural Networks, 459, 133-144.
Cortez, P., Cerdeira, A., Almeida, F., Matos, T., & Reis, J. (2009). Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems, 47(4).
Dasgaonkar, K., & Chopade, S. (2018). Analysis of multi-layered perceptron, radial basis function and convolutional neural networks in recognizing handwritten digits. International Journal of Advance Research, Ideas and Innovations in Technology, 4(3).
Fabro, J. A. (2001, agosto). Redes neurais artificiais. [Curso de Especialização em Inteligência Computacional]. Recuperado em 01 junho, 2018, de http://www.dainf.ct.utfpr.edu.br/~fabro/IF67D/redesneuraisartificiais.pdf
Gambogi, J. A. (2013). Aplicação de redes neurais na tomada de decisão no mercado de ações. Dissertação de mestrado, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brasil.
Garcia, J. C. P., & Campos, L. M. L. (2019). Redes neurais apoiando a tomada de decisão na análise de crédito bancário e detecção do câncer de mama. Revista Gestão e Tecnologia, 19, 90-112.
Jia, W., Zhao, D., Shen, T., Su, C., Hu, C., & Zhao Y. (2014). A new optimized GA-RBF Neural Network Algorithm. Computational Intelligence and Neuroscience, 2014.
Kaushik, A., Gupta, S., & Bhatia, M. (2018). A movie recommendation. System using Neural Networks. International Journal of Advance Research, Ideas and Innovations in Technology, 4(2).
Kovács, Z. L. (2006). Redes neurais artificiais: fundamentos e aplicações. (4a ed.). São Paulo: Livraria da Física.
Poonia, V., Tiwari, H. L., & Mishra, S. (2018). Hydrological analysis by Artificial Neural Network: a review. International Journal of Advance Research, Ideas and Innovations in Technology, 4(3).
Rede Neural Artificial, (n.d.). In Wikipedia enciplopedia livre. Recuperado em 01 junho, 2018, de https://pt.wikipedia.org/wiki/Rede_neural_artificial
Rehman, Z. U., Fayyaz, H., Shah, A. A., Aslam, N., Hanif, M., & Abbas, S. (2018). Performance evaluation of MLPNN and NB: a comparative study on Car Evaluation Dataset. International Journal of Computer Science and Network Security, 18(9), 144-147.
Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition. Retrieved June 01, 2018, from arxiv.org/abs/1402.1128
Sánchez, D., & Melin, P. (2014). Optimization of modular granular neural net- works using hierarchical genetic algorithms for human recognition using the ear biometric measure. Engineering Applications of Artificial Intelligence, 27, 41-56.
Sánchez, D., Melin, P., & Castillo, O. (2015). Optimization of modular granular neural networks using a hierarchical genetic algorithm based on the database complexity applied to human recognition. Information Sciences, 309, 73-101.
Sharma, N., Agarwal, P., & Pandey, U. (2018). Offline handwriting recognition using neural networks. International Journal of Advance Research, Ideas and Innovations in Technology, 4(2).
Skrizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 25 (pp. 1097-1105). San Diego: Neural Information Processing Systems Fundations.
Steiner, M. T. A., Soma, N. Y., Shimizu, T., Nievola, J. C., Lopes, F. M., & Smiderle, A. (2004, novembro). Redes neurais e arvores de decisão na análise do crédito bancário. Trabalho apresentado em Simpósio Brasileiro de Pesquisa Operacional, São João del-Rei, MG, Brasil, 36. Recuperado em 01 junho, 2018, de http://www.din.uem.br/sbpo/sbpo2004/pdf/arq0035.pdf
Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Retrieved June 01, 2018, from http://arxiv.org/abs/1409.3215
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2014). Intriguing properties of neural networks. Retrieved June 01, 2018, from arxiv.org/abs/1312.6199
Wang, Y., & Kosinski, M. (2018, February). Deep neural networks are more accurate than humans at detecting sexual orientation from facial images. Journal of Personality and Social Psychology, 114(2), 246-257.
Downloads
Arquivos adicionais
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Revista Gestão & Tecnologia
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Os direitos, inclusive os de tradução, são reservados. É permitido citar parte de artigos sem autorização prévia desde que seja identificada a fonte. A reprodução total de artigos é proibida. Em caso de dúvidas, consulte o Editor.