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Abstract 

 

The article considers an autonomous linear dynamical system represented by ordinary 

differential equations that define the motion of an orbital tether system. The object of the 

study are group properties of the spectrum of a finite-dimensional linearization operator, 

which smoothly depends on the control parameter k, in the case of general position – without 

degeneracy. Conditions are defined under which there emerges a group of 

symplectomorphisms generating in a linear system the first integral in the form of a 

nondegenerate quadratic form – Hamilton functions. The existence of a symplectic structure 

and a quadratic invariant in a dynamical system allows to reduce it on the basis of the 

variational principle to a divergent Hamiltonian form of the equations of motion with the 

linearization operator represented in a certain "canonical" form. The distinguished category 

of systems with a single invariant allows both to construct a Lie algebra of the corresponding 

Lie group and to move on to the study of stability and gyroscopic stabilization in a 

mechanical system. 
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DIMENSÕES FINITAS DE UM SISTEMA DINÂMICO NO MODELO DE 

MOVIMENTO DO SISTEMA ORBITAL TETHER 

 

 

 

Resumo 

 

O artigo considera um sistema dinâmico linear autônomo representado por equações 

diferenciais ordinárias que definem o movimento de um sistema de corda orbital. O objeto 

do estudo são propriedades de grupo do espectro de um operador de linearização de 

dimensão finita, que depende suavemente do parâmetro de controle k, no caso de posição 

geral – sem degenerescência. São definidas condições sob as quais emerge um grupo de 

simplectomorfismos gerando em um sistema linear a primeira integral na forma de uma 

forma quadrática não degenerada – funções de Hamilton. A existência de uma estrutura 

simplética e de um invariante quadrático em um sistema dinâmico permite reduzi-lo com 

base no princípio variacional a uma forma hamiltoniana divergente das equações de 

movimento com o operador de linearização representado em uma certa forma "canônica". A 

distinta categoria de sistemas com um único invariante permite construir uma álgebra de Lie 

do grupo de Lie correspondente e passar para o estudo da estabilidade e estabilização 

giroscópica em um sistema mecânico. 

 

Palavras-chave: abordagem de grupo, estrutura simplética, invariante quadrático, sistema 

hamiltoniano linear, álgebra de Lie. 

 

 

PROPIEDADES DE GRUPO DEL OPERADOR DE LINEALIZACIÓN DE 

DIMENSIONES FINITAS DE UN SISTEMA DINÁMICO EN EL MODELO DE 

MOVIMIENTO DEL SISTEMA DE ANCLAJE ORBITAL 

 

 

Resumen 

 

El artículo considera un sistema dinámico lineal autónomo representado por ecuaciones 

diferenciales ordinarias que definen el movimiento de un sistema de amarre orbital. El objeto 

de estudio son las propiedades de grupo del espectro de un operador de linealización de 

dimensión finita, que depende suavemente del parámetro de control k, en el caso de posición 

general, sin degeneración. Se definen condiciones bajo las cuales emerge un grupo de 

simplectomorfismos que generan en un sistema lineal la primera integral en forma de forma 

cuadrática no degenerada – funciones de Hamilton. La existencia de una estructura 

simpléctica y una invariante cuadrática en un sistema dinámico permite reducirlo sobre la 

base del principio variacional a una forma hamiltoniana divergente de las ecuaciones de 

movimiento con el operador de linealización representado en cierta forma "canónica". La 

distinguida categoría de sistemas con un solo invariante permite tanto construir un álgebra 

de Lie del grupo de Lie correspondiente como pasar al estudio de la estabilidad y 

estabilización giroscópica en un sistema mecánico. 

 

Palabras clave: enfoque grupal, estructura simpléctica, invariante cuadrática, sistema 

hamiltoniano lineal, álgebra de Lie. 
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1. INTRODUCTION 

 

One of the topical issues in the study of dynamical systems represented by differential 

equations is the application of qualitative methods and approaches, that is, the analysis of 

solutions to a differential equation by its analytic part given on some manifold. There there 

arises the problem of studying the properties of integral curves, their topology, behavior in 

the vicinity of special points: the issues of stability, gyroscopic stabilization, "roughness" 

(structural stability), etc. (Neishtadt, Treschev, 2021).  

One of the qualitative methods employed in the study of this issue is the group 

approach.  

A group (semigroup), being one of the simplest algebraic constructions with a given 

binary operation of associative multiplication, understood as a mapping, allows us to reveal 

the most fundamental (significant) properties of the object under study. 

If {𝐺} is a manifold of elements, then 𝐺 is a typical representative of the manifold, 

and a binary operation is given.  

{𝐺} ⊗ {𝐺} → {𝐺}, 𝑡ℎ𝑒𝑛 ({𝐺};⊗) is a groupoid.  

A groupoid with an associative binary operation, such as matrix multiplication, forms 

a semigroup. The existence of an identity element, that is, the existence of a left and a right 

identity element for the same semigroup, turns the semigroup into a monoid: 𝐸𝐿 ∙ 𝐺 = 𝐺 ∙

𝐸𝑅 = 𝐸𝐺 = 𝐺. The existence of an inverse element for 𝐺: 𝐺−1 ∙ 𝐺 = 𝐺 ∙ 𝐺−1 = 𝐸,𝐺−1 ∈

{𝐺} generates a group from a monoid. 

 
 

2. METHODS 

 

Consider a dynamic system given by ordinary differential equations describing the 

motion of an orbital tether system in circular orbits (Beletsky, Levin, 1993; Yu et al., 2018; 

Dadashov, Lapir, 2020), which when parameterized by 𝑡(𝑡 ≥ 0) takes the form: 

 

{
�̇�𝑜𝑟𝑏 =

3

2
𝑠𝑖𝑛2𝜀 − 2𝑘(1 + 𝛺𝑜𝑟𝑏)

             𝜀̇ = 𝛺𝑜𝑟𝑏                                          
        (1)    

𝑘 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 (𝑘 > 0)  
 

Let us introduce for (1) the notation ∑𝑡– the dynamic system that defines the 

transformation of space 𝑀2 ⊂ 𝑅2 → 𝑀2(𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑) with a group property:  
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{
∑𝑡+𝑠 = ∑𝑡  ∘ ∑𝑠  

∑−𝑡 = (∑𝑡  )
−1 

                                                           (2) 

 

Linearizing (1) by powers of 𝑥1 = 𝛺𝑜𝑟𝑏 −𝛺0and 𝑥2 = 𝜀 − 𝜀0 in the vicinity of the 

equilibrium position (special trajectories are fixed points), we obtain: 

 

‖
�̇�1
�̇�2
‖ = (

−2𝑘 3𝑐𝑜𝑠2𝜀0
1 0

)|
(𝛺0;𝜀0)

∙ ‖
𝑥1
𝑥2
‖ or �̇� = (

−2𝑘 𝜃
1 0

) ∙ 𝑥 �̇� = 𝐴(𝑘; 𝜃) ∙ 𝑥  (3)  

 

under initial conditions (fixed points): 

 

{

𝛺0 ≡ 0

𝑠𝑖𝑛2𝜀0 =
4𝑘

3

𝑐𝑜𝑠2𝜀0 ≡
𝜃

3

 {(
𝜃

3
)
2

+ (
𝑘
3

4

)

2

≡ 1

𝛺0 ≡ 0

                                        (4),  

while 𝐴(𝑘; 𝜃) is a linear operator in the canonical Frobenius form with the 

characteristic polynomial 

det(𝐴(𝑘; 𝜃) − λ𝐸) = 0 ⇔ λ2 + 2𝑘λ − 𝜃 = 0        (5) 

Let us consider the manifold of matrices  

 

𝐺𝐿2(𝑅) = {𝑀𝑎𝑡2𝑥2(𝑅): 𝑑𝑒𝑡 (𝑀𝑎𝑡2𝑥2(𝑅)) ≠ 0} − general linear group of the rank 2; 

𝐴(𝑘; 𝜃) ⊂ {𝑀𝑎𝑡2𝑥2(𝑅)} with 𝜃 ≠ 0 (𝑘 ≠
3

4
). 𝐺𝐿2(𝑅) forms a group with respect to the 

matrix multiplication operation. A general linear group preserves the basis of the linear space 

on 𝑅2 (with the given operations of adding linear elements and their multiplication by a 

number from 𝑅). A degenerate case of 𝜃 ≠ 0 (𝑘 ≠
3

4
)  specifies membership in a semigroup 

with the right identical (neutral) element 𝐸𝑅 = (
1 0
𝑟 0

) ∶  {(
𝑎 0
𝑏 0

)}, where 𝑎; 𝑏; 𝑟 ∈ 𝑅,  is an 

example of an algebraic structure in which there is no left 𝐸𝐿 = (
1 𝑙
0 0

)  identical element, 

but there does exist an infinite manifold of right identical elements. 

The group 𝐺𝐿2(𝑅)contains in itself as a subgroup a manifold of matrices above the 

plane 𝑅 with |𝑑𝑒𝑡𝐴(𝑘; 𝜃)| = 1 − a group of unimodular matrices with the determinant ±1, 

under the condition 𝜃 = ∓1. 

To the condition 𝜃 = −1 corresponds a special linear group of rank 2: 

𝑆𝐿2(𝑅) = {𝑀𝑎𝑡2𝑥2(𝑅): 𝑑𝑒𝑡 (𝑀𝑎𝑡2𝑥2(𝑅)) = 1}, which is a subgroup in 𝐺𝐿2(𝑅) 

preserving a 2-linear (bilinear) antisymmetric (cosymmetric) form. 
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The condition 𝜃 = −1 defines a linear transformation of the symplectic space 

𝛺: 𝑅2 → 𝑅2 is for which it is necessary and sufficient to preserve the bilinear cosymmetric 

form: 

𝛺𝑇 ∙ 𝐼 ∙ 𝛺 = 𝐼, where 𝐼 = (
0 −1
1 0

) is symplectic unit; 𝐼2 = −𝐸;    

𝛺 ≡ 𝐴(𝑘; 𝜃)|
𝑘=

√2

2
𝜃=−1

= 𝐴 (
√2

2
; −1). 

The Frobenius characteristic polynomial transforms into a return polynomial at 𝜃 =
−1: 

 

λ2 + 2𝑘 ∙ λ + 1 = 0,  thus det(𝛺 − λ𝐸) = λ2 ∙ det (𝛺 −
1

λ
𝐸)                  (6) 

Since 𝜆 and 
1

𝜆
 as the eigenvalues of the symplectic transformation (𝜆 = −

1

√2
+

1

√2
∙ 𝑖) 

lie on an identical circle (|𝜆| = 1), and, accordingly, transformation 𝛺 is highly stable, then 

each �̃� that is close enough to 𝛺 is stable (elements of the matrices 𝛺 𝑎𝑛𝑑 �̃� differ less than 

by the rather small value 𝜀). 

Considering that λ and λ̅ =
1

λ
  are of multiplicity 1, their corresponding two-

dimensional invariant plane is nonzero. Thus, 𝛺 = 𝐴(
√2

2
; −1) belongs to the symplectic 

group 𝑆𝑝2(𝑅) = 𝑆𝐿2(𝑅) ⇔ 𝜃 = −1. 

In the general case, 𝑆𝑝2(𝑅) ⊂ 𝑆𝐿2(𝑅), while 𝑆𝑝2(𝑅) = {𝑀𝑎𝑡2𝑥2(𝑅):

𝑑𝑒𝑡 𝑑𝑒𝑡 (𝑀𝑎𝑡2𝑥2(𝑅))  = 1;𝑀𝑎𝑡2𝑥2(𝑅) ∙ 𝐼 ∙ 𝑀𝑎𝑡2𝑥2(𝑅) = 𝐼} is a group of 

symplectomorphisms, that is, diffeomorphisms between regions in  𝑅2 that retain a bilinear 

cosymmetric form when the inverse image is mapped: 

𝛺𝑇 ∙ 𝐼 ∙ 𝛺 = 𝐼 ⇔ 𝐼−1 ∙ 𝛺𝑇 ∙ 𝐼 = 𝛺−1 (7) 

𝛺𝑇 and 𝛺−1 are are similar, hence for 𝛺; 𝛺𝑇  𝑎𝑛𝑑 𝛺−1 the characteristic polynomial 

is invariant. 

To the bifurcation value 𝑘 =
√2

2
 correspond two values of the parameter 𝜃 = ±1, and 

𝜃 = −1 is a symplectic case. 

 

Let х̇ =  𝐴(𝑘; 𝜃) ∙ 𝑥 be a linearized system (3), where 𝐴 = (
−2𝑘 θ

1 0
) is the matrix 

of operator A(𝑘; 𝜃), then if 𝛺 = (−√2 −1
1 0

) is the symplectic matrix for the operator 
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A(𝑘; 𝜃), then there exists a quadratic invariant Ψ(x)≡
1

2
(Ψ(k;θ)∙x;x), such that 

Ψ∗(k;θ)≡Ψ(k;θ)=Ω ∙ 𝐴(k;θ) is a self-adjoint operator set by the symmetric matrix 𝛹(𝑘, 𝜃): 

 

Ψ(k;θ) = Ω ∙ 𝐴(k;θ) = (−√2 −1
1 0

) ∙ (
−2𝑘 θ

1 0
) =  (2√2𝑘 − 1 −√2θ

−2𝑘 θ
) ; the 

condition  Ψ∗(k;θ) = Ψ(k;θ)     (8) 

leads to the following ratio: 

−√2θ =− 2k => θ=√2k and taking into account (4) we obtain 𝑘 =
√2

2
;  θ=1, which 

means that 𝐴 = (−√2 1
1 0

) is a self-adjoint operator (symmetric matrix): 𝐴∗ = 𝐴, which 

with  𝑘 =
√2

2
;  θ=1 sets the self-adjoint operator  Ψ(k,θ) with matrix  Ψ(

√2

2
; 1) =

 (
1 −√2

−√2 1
) the quadratic form  Ψ(x). 

Note that  
dΨ(x)

dt
=
1

2
((Ψ(k,θ)∙A+A∗ ∙ Ψ(k,θ))∙x;x) ≤ 0   ∀x∈𝑀2⊂R2, that is, 

𝑑Ψ(x)

𝑑𝑡
  does 

not increase along the equations of motion. Indeed (Dadashov, Lapir, 2020; Kozlov, 2013), 

Ψ(k,θ)∙A(k,θ) + 𝐴∗(𝑘,θ)∙Ψ(k,θ) with  𝑘 =
√2

2
; θ=1 takes the form: 

(
1 −√2

−√2 1
) ∙ (−√2 1

1 0
) + (−√2 1

1 0
) ∙ (

1 −√2

−√2 1
) = (

−2√2 1

3 −√2
) +

(
−2√2 3

1 −√2
) = (

−4√2 4

4 −2√2
), therefore, 

𝑑Ψ(x)

𝑑𝑡
=

1

2
((
−4√2 4

4 −2√2
)‖
х1
х2
‖ ;‖

х1
х2
‖) = 

1

2
(−4√2𝑥1

2 + 8𝑥1𝑥2 − 2√2𝑥2
2) == −2√2𝑥1

2 +

4𝑥1𝑥2 − √2𝑥2
2 = −√2(2𝑥1

2 − 2√2𝑥1𝑥2 + 𝑥2
2) = −√2(√2𝑥1 − 𝑥2)

2
≤ 0 and Ψ(x) is a 

quadratic invariant. 

 

The existence of a quadratic invariant 𝛹(𝑥)entails the appearance of an integer 

spectrum of quadratic invariants Ψ𝑚(𝑥) (Kozlov, 2019) with a symmetric matrix Ψ𝑚(𝑘; 𝜃):  

(𝐴∗)𝑚 ∙ Ψ(k,θ) ∙ (𝐴)𝑚 =  Ψ𝑚(k,θ) (9)  

Meanwhile, is the spectrum of operator 𝐴(𝑘; 𝜃) is simple, then Ψ(𝑥);Ψ1(𝑥); 

𝛹2(𝑥) … are functionally independent (given that det(A-E)≠ 0), that is, with m=1; for 

example: 
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𝐴∗(𝑘,θ)∙Ψ(k,θ)∙A(k,θ) = 𝐴∗ (
√2

2
; 1) ∙  Ψ (

√2

2
; 1) ∙  𝐴 (

√2

2
; 1) =  (−√2 1

1 0
) ∙ (

1 −√2

−√2 1
) ∙  (−√2 1

1 0
) =

 (
7 −2√2

−2√2 1
) =  Ψ1 (

√2

2
; 1) ; 𝑑𝑒𝑡Ψ(

√2

2
; 1) == 𝑑𝑒𝑡Ψ1 (

√2

2
; 1) =  −1, so (8) 

preserves the measure (volume) and orientation of space. 

 In the general case, there are 
𝑛

2
 independent (functionally) (Zheglov et al., 2019; 

Kozlov, 2018) quadratic invariants in Rn, i.e. with 𝑛 = 2(R2): Ψ(x) or Ψ1(x), for instance: 

Ψ(x);Ψ1(x); Ψ2(x) … will no longer be independent. 

 The condition 𝑥1 ≡ 𝑥2 ≡ 0  and 𝑥1 ≡ 𝑘𝑥2 with 𝑘 =  
√2

2
 determine

𝑑Ψ(𝑥)

𝑑𝑡
≡ 0 ⇔

      ⇔ Ψ(𝑘,θ)∙�̃� +  �̃�∗ ∙ Ψ(k,θ) = 0 (10) 

 with  𝑘 =  
√2

2
;  θ=1, that is, a Lie algebra {𝑔𝜓(𝑘,θ)} of the group {𝐺𝜓(𝑘,θ)} is given: 

�̃� ∈  {𝑔𝜓(𝑘,θ)}, 𝑖𝑓 ∃ is a smooth curve of 𝑔(𝑡) ∈ {𝐺𝜓(𝑘,𝜃)} ∶ 

 
𝑑𝑔

𝑑𝑡
|
𝑡=0

= �̃�,meanwhile, 𝑔(𝑡) ∈ {𝐺𝜓(𝑘,θ)} ⇔  

⇔ (𝑔(𝑡))
𝑇
∙ Ψ(𝑘,θ)∙(𝑔(𝑡)) = Ψ(𝑘,θ), where  𝑘 =  

√2

2
; θ=1;  

𝑒𝑥𝑝{�̃�𝑡}|
𝑡=1

= 𝑒𝑥𝑝{�̃�}|
𝑡=1

∈ {𝐺𝜓(𝑘,θ)} 

Relationship (10) is satisfied by the manifold of matrices of the form: 

 �̃�(𝛾) = 𝛾 ∙ (√
2 −1

1 −√2
) , 𝛾 ∈ 𝑅. (11)  

Similarly, consider the Lie algebra  {𝑔Ω}: 

{𝑔Ω}: Ω ∙ (𝐴 (
√2

2
; 1) ∙ 𝛷) + (𝐴 (

√2

2
; 1) ∙ 𝛷)

∗

∙ Ω = 0, of the group 

{𝐺𝛺}: (𝑔(𝑡))
𝑇 ∙ 𝛺 ∙ (𝑔(𝑡)) = 𝛺,  while {𝑔𝛺} is isomorphic to the symplectic Lie 

algebra 𝑠𝑝(2; 𝑅);then Φ ∙ Ψ(
√2

2
; 1) − Ψ (

√2

2
; 1) ∙ Φ = 0 

Let Φ ≡ Φ∗ be the is a self-adjoint operator given by the matrix 𝛷 ≡ 𝛷𝑇, then the 

commutator [Ψ;Φ] = [Φ;Ψ] = 0; [Ψ1; Φ1] = [Φ1; Ψ1] = 0 and so on for each pair of 

Ψm and Φm, therefore {Φ;Φ1; … ; Φm} = ξ(gψm) is the center of Lie algebra 𝑔𝛹𝑚 =

{𝛹;𝛹1; … ;𝛹𝑚; 𝛷;𝛷1; … ;𝛷𝑚} of a Cartan subalgebra consisting of self-adjoint operators 

defining the quadratic invariants 𝛹𝑚(𝑥) =
1

2
(Ψm ∙ 𝑥; 𝑥) and Φ𝑚(𝑥) =

1

2
(Φm ∙ 𝑥; 𝑥), 

respectively. 

 Examination of the structure of the quadratic form Ψ(𝑥)makes it possible to 

determine the degree of instability of the system (3) with 𝑘 =  
√2

2
;  θ=1. Let u be the degree 

of instability, that is, the number of eigenvalues of the operator 𝐴(𝑘; 𝜃) in the right half-

plane of the complex plane (Fig. 1).  
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Figure 1. Complex plane 

 

Let 𝑖− be the negative index of inertia of the quadratic form Ψ(𝑥), accordingly, 𝑖+is 

the positive index; then 𝑢 ≡ 𝑖−(𝑚𝑜𝑑2),  𝑖− + 𝑖+ = 𝑛 = 2 (in our case ) (Kozlov, 1992) 

 

Ψ(x) = 
1

2
((

1 −√2

−√2 1
) ∙ ‖

𝑥1
𝑥2
‖ ;‖

𝑥1
𝑥2
‖) = 𝑥1

2 + 𝑥2
2 − 2√2𝑥1 ∙ 𝑥2,  

 

which is reduced by a nondegenerate transformation to the form: Ψ(z) = -𝑧1
2+𝑧2

2; 

𝑖− = 1   and the system (3) is unstable. 

Here, in the general case, the presence of a positively defined quadratic invariant Ψ(𝑥) 

defines the stability of the system (3). 

Since the negative index of inertia 𝑖− = 1, then the spectrum 𝜎 (𝐴(
√2

2
; 1)) consists of 

two real eigenvalues 𝜆1 𝑎𝑛𝑑 𝜆2:  𝜆1 =
−(1+√3)

√2
; 𝜆2 =

√3−1

√2
, which is located in the right half-

plane of the complex plane (Fig. 1) 

𝜆1  ∙  𝜆2 < 0; 𝑑𝑒𝑡 (𝐴 (
√2

2
; 1)) < 0; unstable saddle. 

The existence for the operator 𝐴(𝑘; 𝜃) with 𝑘 =  
√2

2
 of a bifurcation point on 

𝜃(𝜃 = ±1)saddle-focus may indicate a bifurcation of the formation of the saddle-focus 

separatrix loop.  

Let point P be the saddle-focus in R3 with a one-dimensional unstable subspace of the 

operator A:  𝜆 =
−1±√3

√2
 and a two-dimensional stable manifold 𝑅𝑒𝜆1,2 =

−1

√2
 of operator 𝛺 =

𝐴(
√2

2
; −1). 

Given that the first and second saddle values, respectively, are: 

𝜎1(𝑘) = 𝜎1 (
√2

2
) = 𝑅𝑒𝜆1,2 + 𝜆 < 0 

𝜎2(𝑘) = 𝜎2 (
√2

2
) = 2𝑅𝑒𝜆1,2 + 𝜆 < 0; 
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Then if 𝑘 =  
√2

2
 (bifurcation point), the system has a homoclinic trajectory ϒ, which, 

leaving the point P, returns to the same point at 𝑡 → ∞ (rather long time). 

Condition 𝜎1 < 0 ∧ 𝜎2 < 0suggests that there is no there is no nontrivial hyperbolic 

manifold (a countable set of periodic attractors from the phase trajectories of the system), 

and hence the loop of the homoclinic curve ϒ is destroyed, which, in turn, leads either to the 

birth of a stable cycle (I), or not (II) (Fig. 2). 

 

 
Figure 2. Separatrix loop at point P (saddle-focus) 

 

Consider that the cone {𝑥 ∈ 𝑅2\{0}:
𝑑𝛹(𝑥)

𝑑𝑡
≡ 0}  does not contain closed trajectories, 

then when the degree of instability 𝑢 = 𝑖−=1,case II is realized (Fig. 2) – there are no limit 

cycles (I). 

For a more detailed study of nonlocal bifurcations (saddle-focus, for example) in the 

vicinity of the point itself, methods of nonlinear analysis are required, and these studies were 

not conducted in this paper; however, let us note that condition (8) is equivalent to the 

problem on a conditional extremum for a quadratic form of the form: 

 

𝑥𝑇 ∙ 𝐴(𝑘; 𝜃) ∙ 𝑥 → 𝑒𝑥𝑡𝑟 𝑜𝑛 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 (𝑠𝑝ℎ𝑒𝑟𝑒) 𝑥𝑇 ∙ 𝑥 = 1:   (12) 

 

f = 𝑥𝑇 ∙ 𝐴(𝑘,θ)∙x + λ(1-𝑥𝑇∙x); 

𝑓 – Lagrange function, 𝜆 − Lagrange multiplier. 

Stationarity condition: 

𝜕f

𝜕𝑥
= 𝑥𝑇 ∙ 𝐴(𝑘,θ)+𝑥𝑇𝐴∗(k,θ)-2λ𝑥𝑇≡0, 𝑤ℎ𝑖𝑙𝑒 A(k,θ)≡𝐴∗(k,θ)|

𝑘=
√2
2

  θ=1

− the condition of self − adjacency 
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𝜕f

𝜕𝑥
= 2𝑥𝑇 ∙ 𝐴(

√2

2
,1) - 2λ𝑥𝑇≡0 or 𝐴(

√2

2
,1) ∙ 𝑥 − λ𝑥 ≡0, that is, f(x)→extr, then  𝑥- is 

the eigenvector of the operator 𝐴(
√2

2
,1), corresponding to the eigenvalue of 𝜆. 

Sufficient conditions of extremum for f are given by Hessian 𝑑𝑒𝑡 (
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
) ≡ 0 – no 

unconditional extremum, and Hessian 𝑑𝑒𝑡 (
𝜕2(𝑥𝑇𝐴𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗
) < 0 – no conditional extremum. 

Solution of the dynamic system  (3) �̇� = 𝐴(k,θ)∙𝑥,  adjoint to the invariant 𝛹(𝑥) is 

equivalent to the solution of the Hamiltonian system with Hamilton function H: 𝑘 =

 
√2

2
;  θ=1,  

‖
�̇�1
�̇�2
‖ = (−√2 1

1 0
)‖
𝑥1
𝑥2
‖ ⇔ ‖

�̇�1
�̇�2
‖ = (𝛺−1 ∙ Ψ (

√2

2
; 1)) ∙ ‖

𝑥1
𝑥2
‖ or 𝑥 ̇ = 𝛺−1 ∙

𝜕Ψ(𝑥)

𝜕𝑥
  (13), in other words, �̇� = 𝐴(

√2

2
; 1) ∙ 𝑥 is the Hamiltonian system with Hamilton 

function 𝐻 = 𝛹(𝑥). 

Indeed, 𝛺 = (−√2 −1
1 0

) ; 𝛺−1 = (
0 1

−1 −√2
) ;𝛺−1 ∙ Ψ (

√2

2
; 1) = (

0 1

−1 −√2
) ∙

(
1 −√2

−√2 1
) = (−√2 1

1 0
) = 𝐴(

√2

2
; 1)  – is the symmetric matrix A of the self-adjoint 

operator A(
√2

2
; 1). 

The Hamilton equations (13) generate a one-parameter group of phase space 

transformations in itself: 𝑔𝑥0
𝑡 : 𝑅2 → 𝑅2 − 𝑝ℎ𝑎𝑠𝑒𝑓𝑙𝑢𝑥. 

As 𝑔𝑥0
𝑡 : 𝑥0 → 𝑥(𝑡, 𝑥0), then the Jacobian 𝐽 = 𝑑𝑒𝑡 (

𝜕𝑥

𝜕𝑥0
) ≠ 0 and if (

𝜕𝑥

𝜕𝑥0
)𝑇 ∙ 𝐼 ∙

(
𝜕𝑥

𝜕𝑥0
) = 𝐼, then the Jacobi matrix J defines a symplectic structure.  

For example,  𝛺 ∶  (
𝜕𝑥

𝜕𝑥0
) =

𝜕(𝑥1,𝑥2)

𝜕(𝑥10,𝑥20)
=  (

𝜕𝑥1

𝜕𝑥10

𝜕𝑥1

𝜕𝑥20
𝜕𝑥2

𝜕𝑥10

𝜕𝑥2

𝜕𝑥20

) = (−√2 −1
1 0

); – local 

criterion for the canonicity of transformations of a Hamiltonian system into a Hamiltonian. 

Symplectic structure 𝛺 defines a univalent canonical transformation (symplectomorphism). 

In a general case, 𝛺𝑇 ∙ 𝐼 ∙ 𝛺 = 𝑐𝐼, where the c-valence of the canonical transformation 

𝛺𝑇 ∙ 𝐼 ∙ 𝛺𝑇 ∙ 𝐼 ∙ 𝛺 = (
0 +θ

−θ 0
) = (

0 −𝑐
𝑐 0

) => 𝑐 = −θ, but |𝜃| ≤ 3,𝑤ℎ𝑖𝑐ℎ 𝑚𝑒𝑎𝑛𝑠 |𝑐| ≤

3(14) 

the valence of the canonical transformation depends on the choice of initial conditions 

of the dynamical system (4). 

2-form ω on a Hamiltonian vector field for an arbitrary field ∙ sets 1 form (Kozlov, 

2019) 𝑑Ψ(∙), where Ψ(∙) ≡ 𝐻(∙) – Hamilton function: 

𝜔[�̇�,∙] = 𝜔[𝐴𝑥,∙] = (𝛺 ∙ 𝐴 ∙ 𝑥; ∙) = (Ψ(𝑘,θ)∙𝐴−1∙A∙x; ∙) = dΨ(∙) ≡ 𝑑𝐻 
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Thus, the orderly three (𝛹; 𝑅2; 𝛺) will be called a Hamiltonian system on a symplectic 

manifold (𝑅2; 𝛺) with a symplectic structure 𝜔(𝛺), then it is possible to define a Lagrangian 

system (𝐿;𝛹;𝛺 with the Lagrangian of the form: 𝐿 =
1

2
((𝛺 ∙ 𝑥 ; �̇�) − (Ψ(𝑘,θ)∙x;x)), where 

(;) is the scalar product. 

 Let (S; Ψ(𝑘,θ); 𝛺) – be the function on a finite-dimensional symplectic manifold: 

𝑆 = 𝑆 = ∫ 𝐿𝑑𝑡, then for the isochronous variation 𝛿𝑆 the stationarity condition 𝛿𝑆 ≡ 0 

specifies the extremal of the Hamiltonian action of a variational problem with "fixed ends": 

δ∫ ((𝛺 ∙ 𝑥 ; �̇�) − (Ψ(
√2

2
; 1)∙x; x)) dt ≡ 0  (15) 

Indeed, with 𝛺 = (−√2 −1
1 0

)  𝑎𝑛𝑑 Ψ(𝑘,θ)=Ψ(
√2

2
; 1) = (

1 −√2

−√2 1
)  

𝐿 = −√2𝑥1�̇�1 − 𝑥2�̇�1 + 𝑥1�̇�2 − 𝑥1
2 + 2√2𝑥1𝑥2 − 𝑥2

2. 
The condition 𝛿 ∫𝐿𝑑𝑡 ≡ 0 is equivalent to the system of equations: 

{

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�1
) −

𝜕𝐿

𝜕𝑥1
= 0

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�2
) −

𝜕𝐿

𝜕𝑥2
= 0

⇔ {
�̇�1 = √2𝑥1 − 𝑥2

�̇�2 = 𝑥1 − √2𝑥2
⇔ ‖�̇�‖ = (

√2 −1

1 −√2
) ∙ ‖𝑥‖ (16), 

 where (√
2 −1

1 −√2
) = (

0 −1
1 0

) ∙ (
1 −√2

−√2 1
),  

that is �̇� = I ∙ Ψ(
√2

2
; 1)∙x = I∙

𝜕𝐻

𝜕𝑥
; 𝐻 ≡ Ψ(𝑥) − the Hamilton function.  

‖
�̇�1
�̇�2
‖ = (

0 −1
1 0

) ∙ ‖

𝜕𝐻

𝜕𝑥1
𝜕𝐻

𝜕𝑥2

‖ = ‖
−
𝜕𝐻

𝜕𝑥2

    
𝜕𝐻

𝜕𝑥1

  ‖, which means that 𝑥1 ≡ 𝑝; 𝑥2 ≡ 𝑞 can be 

taken as canonical variables, and the variational principle built on operators (matrices) 𝛺 ∧

𝛹(𝑘, 𝜃) sets the equations of motion with a "new" operator for the original system (3) in the 

canonical basis (Darboux basis). 

Of particular interest is the case of Morsky degeneration or Poincaré bifurcation, that 

is, when det(Ψ(𝑘,θ)) ≡ 0;  

Ψ(𝑘; θ) = Ψ∗(𝑘; θ); Ψ(𝑘,θ) = (2√2𝑘 − 1 −√2θ

−2𝑘 θ
)=> θ = √2k,  

then: Ψ(θ) = (
2θ− 1 −√2θ

−√2θ θ
) 

The condition of degeneration takes the form: 

𝑑𝑒𝑡(Ψ(θ)) ≡ 0,  from which we get θ ≡ 0, and, accordingly k =
3

4
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With these values of k and 𝜃, operator 𝐴(𝑘; 𝜃) has the matrix 𝐴 = (
−2𝑘 θ

1 0
) =

(
−
3

2
0

1 0
) −is a degenerate case, since 𝑑𝑒𝑡(𝐴(𝑘;  𝜃)) ≡ 0 as mentioned above, is an element 

of the semigroup with the right identity element. 

Note that Ψ1(𝑘,θ)|θ=0 = 0 and so on. 

However, in general, it is possible to have a case in which 𝐴(𝑘; 𝜃) is degenerate and 

Ψ(𝑘, 𝜃) is not – then a Poisson structure can be introduced (Treshchev, Shkalikov, 2017). 

 

 

3. RESULTS 

 

Let us introduce the notation �̃� = 𝐼 ∙ Ψ(𝑘; θ)=I ∙ Ψ(
√2

2
; 1), where 𝐼 is a symplectic 

unit in the canonical basis, and �̃� satisfies the Lie algebra (11) 

Let us distinguish some spectral properties of the operator �̃�: 

1) The roots 𝜆 of the characteristic polynomial det (�̃� − λE)≡0 are symmetric 

relative to the real and imaginary axes on the complex plane, and, following (12), �̃� ∙ 𝑥 =

±𝑥, where 𝑥 it the eigenvector corresponding to the eigenvalue 𝜆 = ±1, but the Lagrange 

multiplier is no longer equal to it. 

2) Property 1) for operator �̃� entails the property of involutionality, i.e. operator 𝐴~ 

coincides with its inverse: �̃� ∙ �̃� = �̃� ∙ �̃� = 1 in matrix representation  

3) �̃�2 = (√
2 −1

1 −√2
) ∙ (√

2 −1

1 −√2
) = (

1 0
0 1

) = 𝐸 

𝐴 – involution in the algebra of operators in M2(𝑅) ≡ 𝑅2. (reflection 

characterization). 

Let us consider operator 𝑌 =
�̃�+1

2
: 𝑌2 = 𝑌 in the construction of 𝑌, then 𝑌 is the 

operator of construction and M2(𝑅) = 𝑘𝑒𝑟𝑌 ⊕ 𝐼𝑚𝑌, therefore, - 𝐴~ is the reflection of 

space M2(𝑅) relative to 𝑘𝑒𝑟𝑌 

The linear operator 𝑌 = (

√2+1

2
−
1

2

1

2

−√2+1

2

) is the idempotent in the algebra of operators 

M2(𝑅). 𝑌 defines the projection of the space M2(𝑅)on 𝐼𝑚𝑌 in parallel to 𝑘𝑒𝑟𝑌 (𝑌∗ ≠ 𝑌 

which means that 𝑌 is not an orthoprojector). 
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The property of involutionality of the operator �̃� does not entail the isometricity 

property: ∀𝜉;  𝜂 ∈ M2(𝑅): (�̃�𝜂; �̃�𝜉) ≠ (𝜂; 𝜉), as �̃�∗ ≠ �̃�. Accordingly, for operator 𝐴(𝑘; 𝜃), 

the condition of self-adjacency with 𝑘 =
√2

2
;  θ=1: 𝐴∗=A does not entail the isometricity of  

A, due to its involutionality. 

4) The trace of operator �̃� equals zero: 𝑡𝑟�̃� ≡ 0. Operator 𝑑𝑖𝑣(�̃�𝑥) ≡ 0 – the phase 

flux of the system (16) preserves the phase volume (measure). Let 𝑠𝑙2(𝑅) be a manifold of 

traceless operators (matrices): �̃� ∈ 𝑠𝑙2(𝑅) – is a semi-simple Lie algebra, then the algebra 

𝑔𝑙2(𝑅) has a zero center: 𝑔𝑙2(𝑅) = 0⊕ 𝑠𝑙2(𝑅). 

Similarly, for 𝐴(
√2

2
; 1) algebra 𝑔𝑙2(𝑅) degenerates into a direct sum of the center of 

the algebra 𝜉(𝑔𝑙2(𝑅)) and algebra 𝑠𝑙2(𝑅): 

𝑔𝑙2(𝑅) = 𝜉(𝑔𝑙2(𝑅))⊕ 𝑠𝑙2(𝑅) or, respectively, for the elements of these algebras: 

(−√2 1
1 0

) =

(

 
 −

√2

2
0

0 −
√2

2 )

 
 
+

(

 
 −

√2

2
1

1
√2

2 )

 
 

 

Meanwhile, elements from 𝜉(𝑔𝑙2(𝑅)) commutate with the elements of 𝑠𝑙2(𝑅). 

5) From property 2) follows the property of invariance of the bilinear form given by 

the operator (matrix) 𝐼1,1 of the type: (
1 0
0 −1

), and it is true that: �̃�∗ ∙ 𝐼1,1 ∙ �̃� = 𝐼1,1(17);  

and then �̃� belongs to the pseudo-orthogonal group 𝑂𝑝,𝑞 = 𝑂1,1 

Condition (17) in the general case for a pseudo-orthogonal group can be represented 

as: 

𝑂𝑖𝑗 ∙ 𝐼𝑖𝑘 ∙ 𝑂𝑘𝑙 = 𝐼𝑗𝑙  𝑜𝑟 𝑂
𝑇
𝑝,𝑞 ∙ 𝐼𝑝,𝑞 = 𝐼𝑝,𝑞, from which we get  

𝑑𝑒𝑡(𝑂𝑝,𝑞)
2
= 1; considering also that: 𝑂𝑖1 ∙ 𝐼𝑖𝑘 ∙ 𝑂𝑘1 = 𝐼11 = 1 ⇔ |𝑂11| ≥ 1 

Let us introduce the following notations: 

⎯ {𝑂↑(1,1)} − is the manifold of matrices for which 𝑑𝑒𝑡 (𝑂↑(1,1))
2

= 1 

and 𝑂11 ≥ 1 - is a subgroup of group 𝑂(1,1) and is called an orthochronous group. 

⎯ {𝑂↓(1,1)} − is the manifold of matrices for which 𝑑𝑒𝑡 (𝑂↓(1,1))
2

= 1 and 

𝑂11 ≤ −1 − is a subgroup of group 𝑂(1,1) and is called “parity preserving” or 

“orthochorous”. 
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⎯  {𝑆𝑂↑(1,1)} – is the manifold of matrices for which 𝑑𝑒𝑡 (𝑆𝑂↑(1,1)) = 1 and 

𝑂11 ≥ 1 – the subgroup of group 𝑂(1,1). 

Group {𝑆𝑂↑(1,1)} can be defined as the intersection of {𝑆𝑂(1,1)}𝑎𝑛𝑑{𝑂↑(1,1)}or as 

the intersection of {𝑆𝑂(1,1)}𝑎𝑛𝑑{𝑂↓(1,1)}, as well as the intersection of the orthochronous 

and orthochoronous groups. 

Let it be that  𝑃 = 𝐼1,1 = (
1 0
0 −1

) ; 

𝑇 = −𝐼1,1 = (
−1 0
0 1

); then 

𝑃𝑇 = 𝑇 ∙ 𝑃 = (
−1 0
0 −1

), while: 

�̃�∗ ∙ 𝑃 ∙ �̃� = 𝑃; �̃�∗ ∙ 𝑇 ∙ �̃� = 𝑇, н𝑂 �̃�∗ ∙ (𝑃𝑇) ∙ �̃� ≠ 𝑃𝑇. 

In the general case, �̃� = (√
2 −1

1 −√2
) = (

2𝑘 −𝜃
𝜃 −2𝑘

)|
(𝑘=

√2

2
𝜃=1

)
= (

2𝑘 𝜃
𝜃 2𝑘

) ∙

(
1 0
0 −1

) = (√
2 1

1 √2
) ∙ (

1 0
0 −1

) = 𝑃 ∘  𝑆𝑂↑(1,1),  where 𝑆𝑂↑(1,1) = (√
2 1

1 √2
) – the 

element of the group {𝑆𝑂↑(1,1)}.     𝑆𝑂↑(1,1) =  (
2𝑘 𝜃
𝜃 2𝑘

) = (

1

√1−𝑘2

𝑘

√1−𝑘2

𝑘

√1−𝑘2

1

√1−𝑘2

)|

𝑘=
√2

2

=

 (
cosh(𝜎) sinh(𝜎)

sinh(𝜎) cosh(𝜎)
) (18),𝑤ℎ𝑒𝑟𝑒 tanh(𝜎) =

sinh(𝜎)

cosh(𝜎)
=   =

𝜃

2𝑘
|
𝑘=

√2

2

= 𝑘 =

√2

2
, 𝑤ℎ𝑖𝑙𝑒 𝜎 − pseudo − length, that is  𝜎 − parameterization of a pseudocircle through its 

length: 𝑐𝑜𝑠ℎ2𝜎 − 𝑠𝑖𝑛ℎ2𝜎 = 1 −𝑀1(𝜎)manifold; or in the(𝑘; 𝜃) parameterization: (2𝑘)2 −

𝜃2 = 1 − 𝑀2(𝑘; 𝜃)manifold (19),  

where 𝜎 = 𝑙𝑛 (𝜃 + √1 + 𝜃2) . The coincidence of conditions (4) and (19) gives:  

{
𝜃2

9
+
16𝑘2

9
= 1

(2𝑘)2 − 𝜃2 = 1
⇔ {

𝑘2 =
1

2

𝜃2 = 1
 , in particular: 𝑘 =

√2

2
; 𝜃 = 1. 

Let it be given {𝑆𝑂↑(1,1)}, then  𝑆𝑂↑(1,1) = (
cosh(𝜎) sinh(𝜎)

sinh(𝜎) cosh(𝜎)
) = cosh(𝜎) ∙

(
1 𝑉
𝑉 1

) = cosh(𝜎) ∙ (
1 𝑘
𝑘 1

)|
𝑘=

√2

2

= cosh(𝜎) ∙ (
1

√2

2

√2

2
1
) , 𝑤ℎ𝑒𝑟𝑒 𝑉 = 𝑡𝑎𝑛ℎ(𝜎) =

𝜃

2𝑘
 velocity determining the booster matrix (18) 

From the relation (11) we have: �̃� = 𝛾 ∙ (√
2 −1

1 −√2
) = 𝛾 ∙ (√

2 1

1 √2
) ∙ (

1 0
0 −1

) =

= 𝛾√2 ∙ (
1

√2

2

√2

2
1
) ∙ (

1 0
0 −1

) =>  𝛾 =
cosh (𝜎)

√2
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Or in the general case 𝛾 = 𝛾(𝑘, 𝜃);  𝛾 (
√2

2
; 1) = 1 

Hence, we can write down the fragments (connectivity components) that are part of 

the group {𝑂(1,1)}: 

{𝑂(1,1)} = {𝑆𝑂↑(1,1)}⊕ {𝑃 ∘ 𝑆𝑂↑(1,1)} ⊕ {𝑇 ∘ 𝑆𝑂↑(1,1)} ⊕ {𝑃𝑇 ∘ 𝑆𝑂↑(1,1)}, 

and the group {𝑂(1,1)} is not compact as the direct sum of non-compact subgroups, in 

particular, �̃� ∈ {𝑃 ∘ 𝑆𝑂↑(1,1)} ⊂ {𝑂↑(1,1)} 

Note, for example, that the following factor groups are defined: 

{𝑂(1,1)}/{𝑆𝑂↑(1,1)} =  𝑍2 × 𝑍2 

{𝑂(1,1)}/{𝑆𝑂(1,1)} =  𝑍2 

{𝑂(1,1)}/{𝑂↑(1,1)} =  𝑍2 

And so on. 

{𝑆𝑂↑(1,1)}; {𝑆𝑂(1,1)}; {𝑂↑(1,1)};form the normal subgroups of the group 

{𝑂(1,1)}the union of four pairwise non-intersecting adjacent classes. 

The transition from operator (matrix) �̃� 𝑡𝑜 𝑆𝑂↑(1,1) is due to the following 

circumstances: 

First, 𝑆𝑂↑(1,1) = Φ(𝑘, 𝜃) = Φ∗(𝑘, 𝜃)|
𝑘=

√2

2
 𝜃=1 

= (√
2 1

1 √2
) and 

Φ(
√2

2
; 1) ∙ 𝛹 (

√2

2
; 1) − 𝛹 (

√2

2
; 1) ∙ Φ (

√2

2
; 1) = 0, that is, as discussed above, the 

commutator [Φ ∙ 𝛹]|
𝑘=

√2

2
 𝜃=1 

≡ 0, therefore:Φ𝑥 = 𝜇𝑥 −integral of motion (invariant) of 

the system (3), where𝜇 −c is the eigenvalue for the eigenvector x of the operator 

(matrix) Φ (
√2

2
; 1). 

Second, the condition Φ = Φ∗ opens the possibility to move from a noncompact 

manifold given by the operator �̃� (
√2

2
; 1)  𝑡𝑜 Φ (

√2

2
; 1) set on the compact (sphere 𝑆1 − i.e. 

to consideration of the problem on a conditional extremum for a quadratic form of the form: 

 

𝑥𝑇 ∙ Φ(𝑘, 𝜃) ∙ 𝑥 → 𝑒𝑥𝑡𝑟 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑝ℎ𝑒𝑟𝑒  𝑥𝑇 ∙ 𝑥 = 1:   (20) 

𝑓 = 𝑥𝑇 ∙ Φ(𝑘, 𝜃) ∙ 𝑥 + 𝜇 ∙ (1 − 𝑥𝑇 ∙ 𝑥), where, same as above, 𝑓 − Lagrange 

function; 𝜇 −Lagrange multiplier. 

 

The stationarity condition for Φ(
√2

2
; 1) : Φ(

√2

2
; 1) ∙ 𝑥 − 𝜇 ∙ 𝑥 = 0.  
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With 𝜇 = √2 − 1  we have an unconditional extremum on the sphere (minimum); 

With 𝜇 = √2 + 1 , there is no unconditional extremum, but with 𝜇 = √2 ± 1 there is 

an extremum for 𝑥𝑇 ∙ Φ (
√2

2
; 1) ∙ 𝑥 → 𝑚𝑖𝑛,as the Hessian 𝑑𝑒𝑡 (

𝛿2(𝑥𝑇𝛷𝑥)

𝛿𝑥𝑖𝛿𝑥𝑗
) > 0. 

Third, the condition: 

[𝛷;𝛹] = [𝛹;Φ]|
𝑘=

√2

2
 𝜃=1 

= 0 is satisfied by operator Φ = Φ∗ = Φ(𝜑𝑖𝑗) of a more 

general kind, provided that: 𝜑12 = 𝜑21(self-adjacency) and 

𝜑11 = 𝜑22(the condition for the commutator to turn to zero): 

𝛷 = (
𝜑11 𝜑12
𝜑21 𝜑22

) = (
𝜑11 𝜑12
𝜑12 𝜑11

) ,𝑤ℎ𝑒𝑟𝑒 𝜑𝑖𝑗 ∈ 𝑅. 

Fourth, note that Φ(𝑘, 𝜃) = Φ(
√2

2
; 1) = 𝑆𝑂↑(1,1) maintains the symplectic structure 

𝐼 = (
0 −1
1 0

) introduced earlier: 

Φ∗ (
√2

2
; 1) ∙ 𝐼 ∙ Φ (

√2

2
; 1) = 𝐼, 

However, the same property is demonstrated by Φ = Φ(𝜑𝑖𝑗): Φ
∗(𝜑𝑖𝑗) ∙ 𝐼 ∙ Φ(𝜑𝑖𝑗) =

𝐼 given that 𝜑11
2 − 𝜑12

2 = 1(21) ⇔ 𝑑𝑒𝑡 (Φ(𝜑𝑖𝑗))  = 1, for example, 

𝛷 = (√
3 √2

√2 √3
) if 𝑑𝑒𝑡 (Φ(𝜑𝑖𝑗))  = −1, 𝑡ℎ𝑒𝑛 Φ

∗(𝜑𝑖𝑗) ∙ 𝐼 ∙ Φ(𝜑𝑖𝑗) = 𝐼
−1 ≡ 𝐼𝑇, 

given that 𝜑11
2 −𝜑12

2 = −1(22). 

 

It is possible to expand the class of considered operators Φ(𝜑𝑖𝑗) by excluding the 

condition of the commutator turning to zero, requiring only the condition of preserving the 

symplectic structure, 𝑑𝑒𝑡 (Φ(𝜑𝑖𝑗)) = 1, or the fulfillment of the condition 𝑑𝑒𝑡 (Φ(𝜑𝑖𝑗)) =

−1,that is, for an arbitrary operator (matrix) there exists a representation 𝜋: 

Φ(𝜑𝑖𝑗) → 𝑑𝑒𝑡 (Φ(𝜑𝑖𝑗)), which means that there is a homomorphism 𝑜𝑚𝛸 ∶

 𝐺𝐿2(𝑅) → 𝑅\{0},𝑀𝑎𝑡2𝑥2(𝑅) → 𝑑𝑒𝑡(𝑀𝑎𝑡2𝑥2(𝑅)) ∶  ∀𝛼 ≠ 0  ∃𝛬 = (
𝛼 0
0 −1

) , =>

𝐼𝑚(𝐻𝑜𝑚𝛸) = 𝑅\{0} (group) => 𝐺𝐿2(𝑅)/𝑆𝐿2(𝑅) =̃ 𝑅\{0} ⊃ (𝑍\{0};×) =

{±1} 𝑎𝑛𝑑 𝐾𝑒𝑟(𝐻𝑜𝑚𝛸) = 𝑆𝐿2(𝑅). 
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Introducing the notation for the group that preserves the symplectic structure {𝐺1} − 

a set of matrices (operators) with 𝑑𝑒𝑡𝐺1 = 1 and, consequently - {𝐺2} with 𝑑𝑒𝑡𝐺2 = −1, we 

receive the following: 

The group {𝐺1} includes, for example, the elements: Φ(𝜑𝑖𝑗); 𝑃𝑇, and 𝛬 =

(
𝛼 0
0 −1

) = 𝑃 with 𝛼 == −1; ℎ = (
1 −1
0 1

), etc. 

To the group {𝐺2}we can attribute: 𝐴 (
√2

2
; 1) ; �̃� (

√2

2
; 1) ; 𝑃, while 𝛬 = (

𝛼 0
0 −1

) =

𝑃 𝑎𝑡 𝛼 = 1;   𝑇; 𝑙 = (
0 1
1 0

) , 𝑒𝑡𝑐. 

Fifth, consider a restriction to Z of relations (21) and (22): 𝜑11
2 − 𝜑12

2 = ±1, given on 

R, for the special case: 𝑎2 − 2𝑏2 = ±1   𝑎, 𝑏 ∈ 𝑍(Pell's equation) (van der Waerden, 1976). 

In this case the recurrence relations are fulfilled: 

{
𝑎𝑛+1 = 𝑎𝑛 + 2𝑏𝑛
𝑏𝑛+1 = 𝑎𝑛 + 𝑏𝑛

 

This sets up a linear automorphism 𝐴𝑢𝑡𝐺𝐿2(𝑍) ∶ 𝑅
2 → 𝑅2  of the two-dimensional 

real plane  (Gorbatsevich, 2004) (𝐺𝐿2(𝑍) is a subgroup in 𝐺𝐿2(𝑅). The linear transformation 

𝐺𝐿2(𝑍) retains the integer lattice 𝑍2 ⊂ R2 and induces the automorphism of the 

two−dimensional torus 𝑇2 ≡ R2/𝑍2, − 𝐷𝑖𝑓𝑓𝐴 ∶  𝑇2 → 𝑇2;  

𝐷𝑖𝑓𝑓𝐴|𝐺𝐿2(𝑍) = 𝑑1 = (
1 2
1 1

) is Thom’s example (Gorbatsevich, 2004). 

 𝑑1 is presentation of𝐷𝑖𝑓𝑓𝐴(Anosov's linear diffeomorphism). Since 𝑑𝑒𝑡(𝑑1) =

−1, 𝑡ℎ𝑒𝑛 𝑑1 ∈ {𝐺2}: 

𝑑1
∗ ∙ 𝐼 ∙ 𝑑 = 𝐼−1; det(𝑑1 − λ𝐸) = 0 <=> λ(𝑑1) = 1 ± √2,  although for 

𝜇 (Ф(
√2

2
; 1))  = 1 + √2  unconditional extremum (extremum on the compact) was absent. 

Similarly, by the action on the basis elements of the lattice 
𝑅2

𝑍2
 in her fundamental field, 

one can take 𝐷𝑖𝑓𝑓𝐴|𝐺𝐿2(𝑍) = 𝑑2 = (
2 1
1 1

) − 𝐴𝑟𝑛𝑜𝑙𝑑′𝑠 𝑐𝑎𝑡 (Arnold, 2012; Gorbauevich, 

2022). 

 𝑑2 ∈ {𝐺1} ∶ det(𝑑2) = 1, и 𝑑1
∗ ∙ 𝐼 ∙ 𝑑 = 𝐼.  

The composition of groups {𝐺1} 𝑎𝑛𝑑 {𝐺2} allows speaking of topologically adjoint 

diffeomorphisms, i.e. the existence of geomorphisms; for instance, ℎ 𝑎𝑛𝑑 𝑃𝑇 ∶  𝑑2(ℎ) =

ℎ−1 ∙ 𝑑2 ∙ ℎ = (
3 −1
1 0

) , 𝑑2 = (
2 1
1 1

), i.e. matrices 𝑑2 and 𝑑2(ℎ) have the same 
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characteristic polynomial, and therefore define the same operator 𝐷𝑖𝑓𝑓𝐴, with 𝑑2(𝑃𝑇) =

(𝑃𝑇)−1 ∙ 𝑑2 ∙ (𝑃𝑇) ≡ 𝑑2 

The above circumstances allow, on the one hand, to turn to the issues of structural 

stability (roughness) of linear dynamic systems given by Anosov diffeomorphisms on 

compact manifolds forming an open subset in the group of all diffeomorphisms on a given 

manifold. On the other hand, this allows for the use of the methods of hyperbolic dynamics, 

- considering the matrix of the linearization operator as hyperbolic, and the fixed point as 

hyperbolic. Note that if, for example 𝑑1 𝑎𝑛𝑑 𝑑2 belong to the group 𝐺𝐿2(𝑍), they are 

hyperbolic when and only when 𝑑1
2 (𝑑2

2), belonging to the group 𝑆𝐿2(𝑍),are hyperbolic 

(Gorbatsevich, 2004). 

For the hyperbolic point 𝑋0,i.e. for any element 

𝐺1𝑓𝑟𝑜𝑚 {𝐺1} 𝑎𝑛𝑑 𝐺2 𝑓𝑟𝑜𝑚 {𝐺2}, −𝑑𝑒𝑡 (𝐺𝑖 ± 𝐸) ≠ 0 there are a stable 𝑊𝑆(𝑥0) and an 

unstable 𝑊𝑢(𝑥0) manifolds, meanwhile 𝑊𝑢(𝑥0) is stable with respect to the inverse 

diffeomorphism. 𝑊𝑆(𝑥0) 𝑎𝑛𝑑 𝑊
𝑢(𝑥0)are homeomorphic to 

𝑅𝑑𝑖𝑚𝑊
𝑆(𝑥0) 𝑎𝑛𝑑 𝑅𝑑𝑖𝑚𝑊

𝑢(𝑥0)(in the internal topology). 

Six, it becomes possible to analyze the linearization operators by topological 

dimensionality (the type of the equilibrium position point). 

Operator 𝐴 (
√2

2
; 1)  𝑐 𝑑𝑒𝑡 (𝐴 (

√2

2
; 1)) = −1 < 0  defines the saddle fixed point; this 

is also the behavior of the operator �̃� (
√2

2
; 1) ≡ 𝑃 ∘ 𝑆𝑂↑(1,1) − saddle point, and 𝑇 ∘

𝑆𝑂↑(1,1) −works similarly. 

If𝑥0 is the saddle point, its stable and unstable manifolds have nonzero topological 

dimensionality: 

𝑑𝑖𝑚𝑊𝑢(𝑥0) = 1,−𝑊
𝑢(𝑥0)\{𝑥0} – one-dimensional unstable separatrix; 

𝑑𝑖𝑚𝑊𝑠(𝑥0) = 1,−𝑊
𝑠(𝑥0)\{𝑥0} − one-dimensional stable separatrix. The saddle 

point is also characteristic of the Anosov diffeomorphism 𝑑1. 

Operator 𝐴(𝑘; 𝜃) = 𝐴 (
√2

2
; −1) = Ω – defines a stable focus at the point of 

equilibrium position, and since 𝛺 is not nondegenerate, then there is 𝐴′ (
√2

2
; 1) =

(
−1 −√2

−√2 −1
) that ensures that 𝐴 (

√2

2
; 1) ∙ 𝐴′ (

√2

2
; 1) = Ω−𝟏.    𝐴′ (

√2

2
; 1) determining the 

saddle point, represents the operator 𝐷𝑖𝑓𝑓(𝑅2), set on torus 𝑇2 = 𝑅2/𝑍2 by matrix 
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𝑑1
−1 (

√2

2
; 1), while 𝑑1 ∙ 𝑑1

−1 = 𝐸, and  homeomorphism 𝑅2 → 𝑇2 = 𝑅2/𝑍2can be 

constructed. 

For operator 𝑆𝑂↑(1,1) = Φ(
√2

2
; 1).  𝑡𝑟 (Φ(

√2

2
; 1)) > 0, 𝑏𝑢𝑡 0 <

𝑑𝑒𝑡 (Φ(
√2

2
; 1)) < (

𝑡𝑟(Φ(
√2

2
;1))

2
)

2

− the unstable node −𝑑𝑖𝑚𝑊𝑢(𝑥0) = 2. 

The diffeomorphism 𝑑2 has 𝑑𝑒𝑡(𝑑2) = 1,𝑤ℎ𝑖𝑙𝑒0 < 𝑑𝑒𝑡(𝑑2) < (
𝑡𝑟(𝑑2)

2
)
2

and 

𝑡𝑟(𝑑2) > 0, i.e. by formal parameters, it sets an unstable node. However, being a 

diffeomorphismon torus 𝑇2 =
𝑅2

𝑍2
, it defines its dense irrational winding, defining an unstable 

manifold 𝑊𝑢(𝑥0) with dimensionality 𝑑𝑖𝑚𝑊𝑢(𝑥0) = 1 in the invariant direction of the 

eigenvector ‖
1

√5−1

2

‖, adjoint to the eigenvalue 𝜆 =
3+√5

2
  𝑓𝑜𝑟 𝑑2; and a stable manifold 

𝑊𝑠(𝑥0) with dimensionality 𝑑𝑖𝑚𝑊𝑠(𝑥0) = 1 in the orthogonal direction with 𝜆 =

3−√5

2
 𝑓𝑜𝑟 𝑑2. 

Operator (matrix) 𝑃𝑇 ∘ 𝑆𝑂↑(1,1) − defines the stable node at the equilibrium 

position: 𝑑𝑒𝑡 (𝑃𝑇 ∘ 𝑆𝑂↑(1,1)) = 1, 𝑡𝑟 (𝑃𝑇 ∘ 𝑆𝑂↑(1,1)) < 0 

0 < 𝑑𝑒𝑡 (𝑃𝑇 ∘ 𝑆𝑂↑(1,1)) < (
𝑡𝑟(𝑃𝑇∘𝑆𝑂↑(1,1))

2
)

2

.  

In the general case the bifurcation diagram for the operator 𝐴(𝑘; 𝜃) = (
−2𝑘 𝜃
1 0

) can 

be represented as presented below (Fig. 3):  
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Figure 3. Bifurcation diagram (𝐼1 − stable node ; 𝐼2 − unstable node ; 𝐼𝐼1 − dicritical 

(degenerate) stable node ; 𝐼𝐼2 − dicritical (degenerate) unstable node ; 𝐼𝐼𝐼1 − stable focus ; 

𝐼𝐼𝐼2 − unstable focus ; 𝐼𝑉 − saddle) 

 

Since 𝑑𝑒𝑡(𝐴(𝑘; 𝜃)) = −𝜃 𝑎𝑛𝑑 𝑡𝑟(𝐴(𝑘; 𝜃)) = −2𝑘 𝑎𝑛𝑑 𝑘 > 0, 𝑡ℎ𝑒𝑛 �̅�, a 

degenerate stable node (unstable node), satisfies the condition 

{
−𝜃 = 𝑘2

𝜃2

9
+
16𝑘2

9
= 1

⇔ {
�̅� = −�̅�2 = −(√73− 8) ≈ −0,544

2|�̅�| = 2√√73 − 8 ≈ 1,475
 

Similar conditions of dicrity (degeneracy) are satisfied by 𝑃𝑇 (stable node) and 

ℎ (unstable node). 

As noted previously and apparent from the diagram, 𝑑1
−1 𝑎𝑛𝑑 𝐴′(

√2

2
; 1) are 

representatives of the same operator, but the same property of the invariance of the 

characteristic polynomial is demonstrated by 𝑑1 𝑎𝑛𝑑 Ψ(
√2

2
; 1), which means that 𝑑1 can 

also be assigned the meaning of the quadratic invariant on the torus. 

 
4. CONCLUSION 

 
The two operators (matrices) 𝐴(𝑘; 𝜃) 𝑎𝑛𝑑 Ψ(𝑘; 𝜃), which satisfy the condition of 

nondegeneracy (openness condition on manifold), as well as the presence of a quadratic 

invariant Ψ(𝑥) allows us to formulate the problem of toric topology: toric compactification 

- invariance of torus action on a phase space (noncompact manifold) and Hamiltonian toric 

manifold − compact connected Hamiltonian 𝑇2 −manifold (R2; ω; Μ) with the effective 
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action of the torus 𝑇2, where Μ − the mapping of moments, i.e. the mapping to the Lie 

algebra of the torus 𝑇2 (Buchstaber, Panov, 2015; 2020). 

Let us consider the aspects related to the question of gyroscopic stabilization in a 

mechanical system.  

For this purpose let us introduce an "operator" representation of the dynamic system 

(1): 

(
1 0
0 1

) �̈� + (
2𝑘 0
0 2𝑘

) �̇� + (
−𝜃 0
0 −𝜃

) 𝑥 ≡ 0 (23) 

Indeed, system (1) can be presented in the form: 

{
Ω̈𝑜𝑟𝑏 + 2𝑘Ω̇𝑜𝑟𝑏 = 3𝑐𝑜𝑠2𝜀Ω𝑜𝑟𝑏

              𝜀̈ + 2𝑘𝜀̇ =
3

2
𝑠𝑖𝑛2𝜀 − 2𝑘

 (24) 

By laying out the right parts in a row by degrees (𝛺𝑜𝑟𝑏 − 𝛺0) 𝑎𝑛𝑑 (𝜀 − 𝜀0) in the 

vicinity of the equilibrium position and minding the initial conditions (4) we get (23), where 

𝑀 = (
1 0
0 1

) – the inertia operator,  

−𝑀∗ ≡ 𝑀;   𝐷∗ ≡ 𝐷 = (
2𝑘 0
0 2𝑘

) – dissipative force operator, while 𝐷 ≥ 0 

Π∗(𝜃) ≡ Π(𝜃) = (
−𝜃 0
0 −𝜃

) – the conservative force operator. 

Equation (23) on the solutions (3) is presented in the form (Kozlov, 2021; 2022; de 

Leon, Rodrigues, 1989): 

(
1 0
0 1

) �̈� + (−4𝑘
2 − 𝜃 2𝑘𝜃
2𝑘 −𝜃

)𝑥 = 0 (25), 

Herein the condition Π(𝑘; 𝜃) ≡ Π(𝑘; 𝜃) corresponds to the condition 𝜃 ≡ 1(initial 

conditions). 

Let it be that Π(𝑘; 𝜃) −the conservative force operator defining a quadratic form 

(potential energy) of the following form:  

Let it be that Π(𝑘; 𝜃) − the conservative force operator defining a quadratic form 

(potential energy) of the following form:  

1

2
(Π𝑥; 𝑥) ≡

1

2
(Π(𝑘; 𝜃) ∙ 𝑥; 𝑥) =

1

2
(Π (

√2

2
; 1) ∙ 𝑥; 𝑥) =  

=
1

2
((
−3 √2

√2 −1
) ∙ ‖

𝑥1
𝑥2
‖ ;‖

𝑥1
𝑥2
‖) =

1

2
(−3𝑥1

2 + 2√2𝑥1𝑥2 − 𝑥2
2), which can be 

transformed by a nondegenerate transformation to the form: 
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1

2
(− (2 −

2√2

√3
) 𝑧1

2 − (2 +
2√2

√3
) 𝑧2

2), where 𝑝 ≡ 𝑖− is the degree of oddness of the 

quadratic form  
1

2
(Π ∙ 𝑥; 𝑥), 𝑖− = 2 − the negative inertia index of the form, since 𝑝 is even 

and 𝐷 = 0(dissipative force operator), then the system can have gyroscopic stabilization 

with the operator 

Γ ∶ Γ∗ = −Γ, for example, considering equation (23) based on the solutions  

�̇� = �̃� ∙ 𝑥 ≡ (𝑃 ∘ 𝑆𝑂↑(1,1)) ∙ 𝑥 or �̇� = (𝑇 ∘ 𝑆𝑂↑(1,1)) ∙ 𝑥 , we get that for  

Γ = 𝐼 𝑎𝑛𝑑 Γ = −𝐼 respectively, provided that Ω𝑇 ∙ Γ ∙ Ω = Γ   is the valence of the 

canonical transformation 𝑐 = ±1 (𝑠𝑒𝑒 (14)). 

This article indicates only the fundamental possibility of gyroscopic stabilization of a 

linear dynamic system, and a detailed analysis was not carried out, but it seems very 

promising and prospective from the energy point of view. 

Finally, let us note the following two facts: 

1. The operator 𝐴(𝑘; 𝜃) satisfies the following matrix equation:(𝐴 + 𝐷) ∙ 𝐴 + Π ≡

0 ∀𝜃 while 𝑑𝑒𝑡(𝐷2 − 4Π) > 0 ∀𝑘; 𝜃, so there is a "compressive" operator  

𝐴 = −𝐷−1 ∙ (𝐴2 + Π) 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐴′ = −𝐷 + Ψ(𝑘; 𝜃) satisfying the equation 

(𝐴′ +𝐷) ∙ 𝐴′ + Π = 0 

𝐴′ = 𝐴′(Ψ(𝑘; 𝜃))|
𝑘=
√2
2

𝜃=1

= (
−1 −√2

−√2 −1
) noted above. 

The existence of 𝐴′ (
√2

2
; 1) entails the fulfillment of two fundamental relations:  

𝐴′ (
√2

2
; 1) ∙ Ψ (

√2

2
; 1) = 𝐸 𝑎𝑛𝑑 (𝐴(

√2

2
; 1) ∙ 𝐴′ (

√2

2
; 1))

−1

= Ω 

Geometrically, the "operator" equation (23) is equivalent to the two equations: �̇� =

𝐴 ∙ 𝑥 𝑎𝑛𝑑   �̇� == 𝐴′ ∙ 𝑥, defining two invariant planes ∆1⊂ 𝑅
2 and ∆2⊂ 𝑅

2, which are 

orthogonal to each other and are the direct sum of the original phase space: 𝑅4 = ∆1⊕∆2 

2. Presenting (25) in the form �̈� = −Π(𝑘, 𝜃) ∙ 𝑥, and noting that  

𝐴2(𝑘, 𝜃) = −Π(𝑘, 𝜃), given that 𝜃 ≠ 0; 

Ψ(𝑥; �̇�) =
1

2
(𝐴−1(𝑘, 𝜃) ∙ �̇�; �̇�) −

1

2
(𝐴(𝑘, 𝜃) ∙ 𝑥; 𝑥) the quadratic invariant:  

Ψ(𝑥; �̇�)|�̇�=𝐴(𝑘,𝜃)∙𝑥 ≡ 0 in accordance with (12). 
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Similarly, −Π(𝑘, 𝜃) = (4𝑘
2 + 𝜃 −2𝑘𝜃
−2𝑘 𝜃

) with 𝜃 ≠ 1 can be represented as: 

−Π(𝑘, 𝜃) = Π1(𝑘, 𝜃) ∙ Π2(𝑘, 𝜃), while 𝑑𝑒𝑡(Π1(𝑘, 𝜃)) ≠ 0; Π1
∗(𝑘, 𝜃) =

Π1(𝑘, 𝜃); Π2
∗(𝑘, 𝜃) = Π2(𝑘, 𝜃); 

then –Π(𝑘, 𝜃) = 𝐴(𝑘, 𝜃) ∙ 𝐴(𝑘, 𝜃) = Π1(𝑘, 𝜃) ∙ Π2(𝑘, 𝜃) 

𝛹(𝑥; �̇�) =
1

2
(Π1

−1(𝑘, 𝜃) ∙ �̇�; �̇�) −
1

2
(Π2(𝑘, 𝜃) ∙ 𝑥; 𝑥) - the quadratic invariant: 

𝛹(𝑥; �̇�)|�̇�=𝐴(𝑘,𝜃)∙𝑥 ≡ 0 

For example, let it be that Π2(𝑘, 𝜃) = Φ(
√2

2
; 1) then  

–Π(𝑘, 𝜃) = Π1(𝑘, 𝜃) ∙ Π2 = Π1(𝑘; −√2𝑘 + 1) ∙ Π2, according to equation (4): 

{
𝜃2 + 16𝑘2 = 9

𝜃 = −√2𝑘 + 1
  and condition (20) for Φ(

√2

2
; 1). 

 

We can also introduce a quadratic invariant of the form (Kozlov, 2020; Galiullin, 

1988): 

Ψ(𝑥; �̇�) =
1

2
((Π1𝐴)

−1 ∙ �̇�; �̇�) −
1

2
∙ ((Π2𝐴

−1)−1 ∙ 𝑥; 𝑥), so that Ψ(𝑥; �̇�)|�̇�=Π1(𝑘,𝜃)∙𝑥 ≡

0, under the same condition 𝐴2 = Π1 ∙ Π2 = −Π, whose natural generalization leads to the 

possibility of constructing a Lie algebra (Mimura, Toda, 1991; Perelomov, 1990) Π1 ∙ Π2 +

Π2
𝑇 ∙ Π1 = 0, provided solvability of the system:   {

−Π = Π1 ∙ Π2
      −Π = −Π2

𝑇 ∙ Π1
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