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ABSTRACT 

The article considered the algorithms of the constituent primitive operations of asymmetric 

algorithms for cryptographic data transformation, which can be implemented in parallel 

computing systems (FPGA, GPGPU, quantum computers etc.) to accelerate cryptographic 

transformations. As a basis for the implementation of cryptographic primitives, it is proposed 

to use non-positional number systems. In particular, the article considered the residual number 

system and proposes two new - frequency and coordinate number systems, based on Fourier 

and Tom-Cook interpolation bijective mappings over a ring of integers, as well as the 

implementation of addition, multiplication and division with a remainder in these systems for 

the implementation of modular arithmetic at finite algebraic structures. The analysis of the 

computational and spatial complexity of cryptographic algorithms in suggested number 

systems is presented. As a result, the advantages of non-positional number systems are shown 

in the implementation of asymmetric algorithms for asymmetric cryptographic data 

transformation in parallel computing systems. 

 

Keywords: public-key cryptography, parallel computing system, quantum computer, GPU, 

fast transform algorithms. 

 

 

RESUMO 

O artigo considerou os algoritmos das operações primitivas constituintes de algoritmos 

assimétricos para transformação de dados criptográficos, que podem ser implementados em 

sistemas de computação paralela (FPGA, GPGPU, computadores quânticos etc.) para acelerar 

transformações criptográficas. Como base para a implementação de primitivas criptográficas, 

propõe-se a utilização de sistemas numéricos não posicionais. Em particular, o artigo 

considerou o sistema de numeração residual e propõe dois novos - sistemas de numeração de 

frequência e de coordenadas, baseados em mapeamentos bijetivos de interpolação de Fourier 

e Tom-Cook sobre um anel de inteiros, bem como a implementação de adição, multiplicação 

e divisão com um restante nestes sistemas para a implementação de aritmética modular em 

estruturas algébricas finitas. A análise da complexidade computacional e espacial de 

algoritmos criptográficos em sistemas de numeração sugeridos é apresentada. Como 

resultado, as vantagens dos sistemas numéricos não posicionais são mostradas na 

implementação de algoritmos assimétricos para transformação de dados criptográficos 

assimétricos em sistemas computacionais paralelos. 

 

Palavras-chave: criptografia de chave pública, sistema de computação paralela, computador 

quântico, GPU, algoritmos de transformação rápida. 

 

RESUMEN 

El artículo consideró los algoritmos de las operaciones primitivas constituyentes de los 

algoritmos asimétricos para la transformación de datos criptográficos, que pueden 

implementarse en sistemas de computación paralelos (FPGA, GPGPU, computadoras 

cuánticas, etc.) para acelerar las transformaciones criptográficas. Como base para la 

implementación de primitivas criptográficas, se propone utilizar sistemas numéricos no 

posicionales. En particular, el artículo consideró el sistema de números residuales y propone 
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dos nuevos sistemas de números de frecuencia y coordenadas, basados en mapeos biyectivos 

de interpolación de Fourier y Tom-Cook sobre un anillo de números enteros, así como la 

implementación de sumas, multiplicaciones y divisiones con un resto en estos sistemas para la 

implementación de aritmética modular en estructuras algebraicas finitas. Se presenta el 

análisis de la complejidad computacional y espacial de los algoritmos criptográficos en los 

sistemas numéricos sugeridos. Como resultado, las ventajas de los sistemas numéricos no 

posicionales se muestran en la implementación de algoritmos asimétricos para la 

transformación asimétrica de datos criptográficos en sistemas de cómputo paralelo. 

 

Palabras clave: criptografía de clave pública, sistema de cómputo paralelo, computadora 

cuántica, GPU, algoritmos de transformación rápida. 

 

 

1. INTRODUCTION 

 

Public key cryptography algorithms are based on two mutually inverse one-way 

cryptographic functions. There is a class of cryptographic systems in which the 

implementation of these functions requires resource-consuming computational operations of 

exponentiation in a finite field or a residue class ring, e.g. the RSA algorithm. One can 

alternatively use algebraic-geometric cryptographic coding constructions, e.g. elliptic curve-

based algorithms (ECC), Hermite curves or lattice on base of residue number system (RNS) 

with additive operation inside a group of points within algebraic-geometric area defined over 

a finite field. 

However, when compared with symmetric key algorithms, the computational 

complexity of the abovementioned public key cryptography systems is relatively high and 

their implementation is resource consuming from the viewpoint of memory use and 

cryptographic processing time. One method of accelerating the execution of basic arithmetic 

operations for public key processing is paralleling. Paralleling includes designing parallel 

algorithms and their implementation in parallel computation systems. 

 

2. METHODS AND THE DEVELOPMENT OF THE STUDY 

 

One known classification of computer systems is Flynn’s classification (Farber, 2011): 

­ SISD (single instruction stream / single data stream). This class includes serial 

computer systems having one central processor unit capable of processing only one stream of 

sequentially executed instructions. 
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­ MISD (multiple instruction stream / single data stream). Theoretically, machines of 

this class should execute multiple instructions for a single data stream. 

­ SIMD (single instruction stream / multiple data stream). These systems usually 

include several processors which can execute one instruction for different data streams in 

lockstep mode. 

­ MIMD (multiple instruction stream / multiple data stream). These machines execute 

multiple instruction streams for multiple data streams. 

In the class of SIMD computer systems, one can separate the SMP (symmetric 

multiprocessing) architecture systems the main distinctive feature of which is a common 

physical memory shared by all the system processors. These computation systems currently 

develop the most rapidly due to the use of graphics processor-based computation technologies 

(GPGPU, general-purpose graphics processing units, e.g. the NVIDIA CUDA technology). 

These systems are prototypes of quantum computation systems. 

Quantum computation systems offer computational advantage provided a SIMD type 

parallel computation algorithm has been developed, and therefore the development and testing 

of these algorithms is currently an important task (Thiel, 2021). 

Furthermore, quantum computation systems (and the availability of fast parallel 

computation algorithms) are a threat for the cryptographic security of existing algorithms (e.g. 

AES or the El Gamal encryption system in an ECC additive group). Then another important 

task is to develop algorithms to be secure against quantum computations (Srivastava, 2021): 

since a quantum computation system is a lattice in some sense (from the viewpoint of 

mapping-of-sets cryptographic function implementation), the implementation of these 

cryptographic algorithms should be based on the lattice theory. One promising approach is the 

solution of the shortest vector and closest vector problems (SVP and CVP) on the basis of the 

lattice theory (Divesh) with non-positional number system base (Bajard & Imbert, 2004). 

Parallel algorithms are algorithms part of which can be executed simultaneously by 

different processor units. This definition implies the utilization of any of the above described 

parallel computation systems. 

A parallel algorithm can be described with a pseudo code containing a notion of the 

number of parallel processes to be executed for each operation. Also known as the connected 
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graph description method where the graph nodes are defined as separate operations. If the 

result of one operation is used by another operation, then their respective nodes are connected 

with a graph edge. The simultaneously executed operations are represented in the form of 

nodes at the same level; thus, the height of a parallel algorithm graph defined as the number 

of its levels characterizes the graph execution time. 

If n operations out of the N possible ones are executed in sequence (i.e., if n is the 

height of the graph), then the parameter Nn /  is the share of sequential operations. 

Obviously, 1  for SISD computation systems. The maximum achievable acceleration R for 

paralleling between l processor units as compared with sequential graph execution is 

described by Amdahl’s law: 

 )/1/(1 lPPR  , (1) 

where 1P is the part of algorithm execution time that can be paralleled between l 

processor units. 

The number of processor units l used by parallel algorithms (i.e. the width of the 

respective graph) characterizes the resource consumption of graph execution, e.g. power 

consumption and memory use. Then another important parameter of a parallel algorithm is its 

efficiency determined as the ratio of acceleration and the number of parallel processor units 

used: lRS / . 

However, a computational problem can be solved using various algorithms involving 

different numbers of computation operations N (different computational complexity), and 

these algorithms may have different shares of sequential operations . From the viewpoint of 

computation speed, the better of two algorithms is the one with the lowest graph height n or 

with the shortest execution time  for implementation on a specific computer. Efficiency-

based comparison between such algorithms is not indicative because the algorithms have 

different R. Therefore the absolute efficiency indicator can be accepted to be the parameter 

equal to the area of the computational graph (the product of the height n and the width l of the 

graph), or the cost of the parallel algorithm, i.e., the more efficient algorithm is the one that 

has the higher speed and uses the smaller number of parallel processor units. Thus, the cost of 
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the parallel graph is C = nl or C = l for algorithm execution utilizing a specific 

computational platform. 

To compare the efficiency of asymmetric algorithms for cryptographic data 

transformation in parallel computing systems, implementations based on the CUDA 

technology were used. El Gamal based on elliptic curves and Shorr cryptosystems were 

considered as test asymmetric cryptographic systems - the most popular algorithms today 

used in most cryptosystems (for example, EMV banking systems (EMVCo, 2011), 

cryptocurrency systems (Hartwig, 2016)). Comparative analysis of the implementation 

efficiency was carried out on the basis of a theoretical assessment of cost and execution time. 

2.1 Basic Prime Field Operations in Cryptographic Systems 

 

The basic operations of cryptographic systems that implement operations directly over 

a prime field of integers are defined as the operations of summation, multiplication, 

exponentiation and multiplicative modular inversion of big prime integers (modular 

operations). An example is the Schnorr digital signature algorithm (a variant of the El Gamal 

cryptographic system family) illustrated in Fig. 1 (Katz, 2014): 

 

 
             Figure 1. Schnorr digital signature algorithm 
 

The elliptic curve E over the field GF(q) is the smooth curve set by the equation of the 

following type: 

 
64

2
2

3
31

2 aXaXaXYaXYaY  , )(qGFai  , (2) 

 

referred to as the Weierstrass form. We introduce the notation E(X,Y) for a set of points 

))()((),( qGFqGFyx  satisfying Eq. (2) and further containing an infinitely remote point 

 

Input: Element 
*)( pGFg , qgord )( . Private key 

*)( pGFx  (Public key defined as 

*)( pGFy , pgy x mod ). Message (*)GFm . Random integer )(qGFl . Two big prime 

integers p  и q , 1| pq . Cryptographic function )((*): qGFGFH  . 

Output: Digital signature s . 

1: pgr l mod ; 

2: )||( rmHe  ; 

3: qxels mod)(  ; 

Return s . 
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denoted as O. The finite field GF(q) can generally be extended GF(p ) where p is a prime 

integer. 

The scalar multiplication of a point of an elliptic curve in ECC based systems is based 

on the two-point summation group operation (Katz, 2014). The pseudo-code of the general 

point summation algorithm P1 = (x1, y1) and P2 = (x2, y2) is shown in Fig. 2. 

 

 
Figure 2. General point summation algorithm P1 = (x1, y1) and P2 = (x2, y2) for elliptic curve 

E(X,Y) in finite field GF(q) 
 

It can be seen from the point summation algorithm shown above that the basic 

operations of ECC based cryptographic systems are modular operations of summation, 

multiplication and multiplicative inversion in finite field GF(q). 

The basic operation of the NTRU algorithms (Albrecht, 2016) for the lattice L is the 

cyclic convolution in polynomial ring    1/ N

q XXZ
 
requiring implementation of modular 

operations, by analogy with the group operations with Hermite curves (Shi, 2015) in finite 

field GF(q). 

Then one way to reduce the cryptographic operation execution time for asymmetric 

cryptographic systems is to develop fast parallel algorithms of four operations: summation, 

multiplication, calculation of the multiplicative inverse over finite field and integer division 

 

Input: Elliptic curve coefficients (see Eq. 1), points ),(
111

yxP  (or OP 
1

) and ),(
222

yxP   (or 

OP 
2

). 

Output: Point 
21

PPP  . 

1: ),(
33121221

yxPOPPPPPOPPPOP  elsethenelifthenelifthenif ; 

Return P . 

 

Where )~,(),(
3333

yxyxP  , 
33313

~ yaxay  : 

­ if 21 xx  , then accept )/()( 1212 xxyy  , 11 xy   and reduce 0),( XXE  to 

the form 023  baXXX , )(,, qGFba   and calculate 213 xxx  , 

)( 1313 xxyy  ; 

­ else ( ),(21 yxPP  ) use formal differentiation rules to obtain 
dYYXdE

dXYXdE
YXE

/),(

/),(
),(  , 

calculate ),( yxE , xy   and reduce 0),( XXE  to the form 

023  baXXX , )(,, qGFba   and calculate xx 23  , )( 33 xxyy  . 
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with a remainder. All these operations can be implemented either in positional or in non-

positional number systems. 

2.2 Big integer representation in different number systems 

 

Secure public key cryptography systems over GF(q) utilize large-dimension fields (p > 

2
160

 for ECC). Then the modular operations utilized in cryptographic processing are 

implemented as operations with big integers based on the number of registers in the processor 

units used. 

Positional number system 

One known method of big integer representation is the B-based representation in the 

positional number system (PNS - (Jha, 2020)). The integer a > B in the PNS is the integer 

vector 
Bnn

aaa ),,,(
021




a , such that 





1

0

n

i

i

i
Baa , Bai 0 . Alternatively, the integer a in 

the PNS can be interpreted as the polynomial 





1

0

)(
n

i

i

i
xaxa , where 

i
a  are the vector 

representation coefficients. Typically, the base B is chosen to be equal to a power of two, due 

to the binary logic of the existing processor units. Then the operations of division, 

multiplication and calculation of the remainder of division by a power of two are executed by 

shifting and truncation of the high order part of the integer, respectively. 

The magnitude of the base B in the PNS determines the length of the vector 

representing the respective integer; this affects the execution speed of arithmetic operations 

(for parallel computation systems, it affects the number of processor units used) as well as the 

memory size used. An increase in B leads to a reduction in the length of the vector 

Bnn aaa ),,,( 021 a , but the hardware implementation of arithmetic operations in processor 

units is limited to the machine word register length. Then B = 2
m

 is limited by the number of 

processor unit registers and, furthermore, the magnitude of the base should accommodate for 

possible overflow of the processor unit registers resulting from the execution of interim 

arithmetic operations. 

The maximum carry may occur as a result of the multiplication of two integers 

Bnn aaa ),,,( 021 a  and Bnn bbb ),,,( 021 b  – 

http://creativecommons.org/licenses/by-nc/3.0/br/
http://creativecommons.org/licenses/by-nc/3.0/br/
http://creativecommons.org/licenses/by-nc/3.0/br/


 

 
 

 

Journal of Management & Technology, Special Edition Vol. 22, pp. 73-101, 2022               81 

 

 

 

 

   

    

                     Bildziuk, Mikhaylov & Shazhaev             

 

Bji BBBBBBBba )1,2(1)2()12()1()1(maxmax 2  . Thus, for efficient 

integer representation in the PNS the bit representation of the base B should not be greater 

than half of the number of processor unit registers: for example, for 64-bit processor unit the 

magnitude of the base should not exceed 32 binary bits ( 322B ). 

 

Mixed base positional number system 

 

A generalization of the PNS is the system with the base ),,,(
021

mmm
rr




M  

referred to as the mixed base positional number system (MPNS) (Bi, 2008). Any integer 

Ma 0  in this system is the vector 
Mrr

aaa ),,,(
021




a , 
ii

ma 0 , such that 

 






















1

1

1

0

0

r

i

i

j

ji
maaa . The MPNS has the same mathematical operations as the PNS. 

However, the shift operations specify division and multiplication along with the base shift. 

For example, the operation of division by 





1

0

l

i

i
md is set by the l-tuple right shift with the 

new integer representation base ),,,(
21 lrr

mmm 


M , and if the number of digits 0
i

a  for 

1,,1,0  li  , then the division result will be less accurate. The multiplication of the integer a 

by 





1

0

l

i

imd  with the base ),,,(
21 lrr

mmm 


M  is executed through l-tuple left shifting 

with the new integer representation base ),,,(
021

mmm
rr




M , where the number of digits 

0
i

a  for 1,,1,0  li  . The remainder of integer a division by 





1

0

l

i

imd  is determined by 

truncation (resetting) of the high order part of the integer ),,,( 21 lrr aaa  . 

 

Coordination number system 

 

The search for fast multiplication (convolution) algorithms of big integers has led to 

the emergence of non-positional number systems on the basis of interpolation functions. For 

example, the Karatsuba-Ofman algorithm reduces the number of digit-by-digit multiplications 

from 2n  to 3log2n by interpreting two big integers 
Bnn

aaa ),,,(
021




a  and 
Bnn

bbb ),,,(
021




b  

as the integers 0
2/

1 aBaa n   and 0
2/

1 bBbb n  , and their product as 
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 ,)))((( 00

2/

0011010111 baBbababbaaBbaabc nn   (3) 

or 

 ).1())(()( 2/

00

2/

0101

2/

11  nnnn BbaBbbaaBBbaabc  (4) 

 

The Toom-Cook algorithm allows partitioning the factors Bnn aaa ),,,( 021 a  and 

Bnn bbb ),,,( 021 b into r + 1 parts (the Karatsuba-Ofman algorithm is a particular case of the 

Toom-Cook algorithm for r = 1 (Knuth, 1997)), i.e. 



r

i

i
r

n

i
Baa

0

1  and 



r

i

i
r

n

i
Bbb

0

1 . Then 

)( )1/(  rnBcabc with further alignment of the vector
 Bnn

ссс ),,,(
02212




с , where 





r

i

i

i
xcxbxaxc

2

0

)()()( , 



r

i

i

i
xaxa

0

)( , 



r

i

i

i
xbxb

0

)( . The coefficients of the polynomial )(xc  

are restored on the base of 2r + 1 interpolation points such that )()()( kbkakc  , rk 21,0  :  

 
i

iii
cwc 

10, , (5) 

 

where 2)1(  iii
 is the sum of the first i natural integer, 0,22 rr

wс  ,   iwww jijiji ,11,1,   , 

)(
,0

jcw
j

 , ri 2,,1,0  , and irj  2,,1,0  .  

The complexity of the Toom-Cook algorithm is estimated as  1nO  digit-by-digit 

multiplications. 

It should be noted that this algorithm is also suitable for the summation and subtraction of big 

integers, and the coefficients of the polynomial 



r

i

i

i
xcxbxaxc

0

)()()(  can be restored on the 

base of r + 1 interpolation points such that )()()( kbkakc  , rk 1,0 . Then one can define a 

coordination number system (CNS) where any integer a can be represented in the form of two points 

of the Cartesian plane on the basis of the PNS polynomial representation. 

The integer a in the CNS with the base ),,,( 01 kkk nn K  is represented by the vector 

BKnn aaa ,01 ),,,(   a
 
relative to the PNS with the base B such that 






1

0

)(
n

j

j
ijii kakaa , where 







1

0

)(
n

j

j
j xaxa is the polynomial representation of a in the PNS Bnn aaa ),,,( 021 a . The inverse 
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conversion from the CNS to the PNS can be implemented with well-known interpolation methods 

(based on the Lagrange interpolation polynomial, Newton’s iterations etc.). 

One disadvantage of the CNS is the overflow of the processor unit registers at the 

interpolation points. For example, the integer 20482047 22  a  (e.g. in the RSA cryptographic 

system) is represented in the PNS with B = 2
32

 in the form of a 64-digit integer or a 63
th

 order 

polynomial, while in the CNS this integer should be represented by 64 interpolation points. 

The value of the polynomial a(x) at the 64
th

 point will be represented by an integer greater 

than 2
384

 which will require more than 12 x 32-bit registers and lead to the formation of a new 

additional CNS for that point. The Toom-Cook algorithm resolves such situations by 

recursion or branching parallel processes. 

One more disadvantage of this algorithm is the absence of integer comparison and 

division operations. Equity checking is also not always implementable because the same 

integer can be represented with different polynomialы in the PNS, e.g. an integer represented 

by convolution (multiplication) of two other integers )()()( xbxaxc   and the same integer 

with carry operations executed after convolution )(xс  ( )()( xcxс  , but )()( BcBс  ). For the 

same reason division with remainder of the integer c(x) by the integer d(x) is only possible if 

the dividend is represented by the points of the polynomial )()()()( xrxdxqxc  , i.e., for the 

CNS with dcr mod  and )()()( iii kbkakc   the polynomial r(x) cannot generally be restored 

from the points )(mod)()( iii kdkckr  , Kik . 

The multidimensional coordination number system (MCNS) can be defined by 

analogy with the CNS relative to the MPNS. For example the integer a in the MPNS with the 

base ),,,(
021

mmm
rr




M  can be represented in the form of the multidimensional 

polynomial  








 














1

1

1

0

0210 ),,,(
r

i

i

j

jir xaaxxxa  , such that ),,,( 210  rmmmaa  . Then this 

integer in the MCNS is determined by the values of the multidimensional plane at the 

interpolation points, that is, the vector MKnn aaa ,01 ),,,(   a , where )( ii aa k  is the value at 

the point ),,,( 2,1,0,  riiii kkk k . The base of this MCNS is described by the array of vectors 

),,,( 01 kkkK  nn  or the matrix ][ , jikK , ni ,,1,0  , 2,,1,0  rj  . The number of 
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interpolation points n is determined by the multidimensional function interpolation algorithm 

(e.g. the Ben-or/Tiwary algorithm, the Prony method etc. (Kaltofen, 2000)). 

The MCNS possesses all the properties (including disadvantages) of the C NS except 

the rapid growth of its values at the interpolation points. Selecting the CNSS base 

),,,(
021

mmm
rr




M  such that all the values mi are different and close to 2
32

, one can expect 

the integer 20482047 22  a  to be represented in the form of a 64-digit integer in the MPNS. 

Then limiting the CNS base ][ , jikK  to a binary field (in order to reduce the values at the 

multidimensional polynomial points) one can limit the maximum number of interpolation 

points to 2
63

. 

 

Frequency interpolation number system 

 

Fast convolution computation algorithms further include discrete Fourier 

transformation (DFT) ones. For this algorithm, the interpolation points are powers of the 

)( ia  values at these points (for the polynomial 

representation of the integer a in the PNS with the base B) are the frequency representation 

(spectrum) of the integer a calculated by direct DFT. Then the inverse DFT is the 

interpolation function. A widely used fast convolution computation algorithm is the 

Schönhage-Strassen algorithm based on the DFT in the integer ring Z / mZ. However, faster is 

the Fuhrer algorithm which is the improved Schönhage-Strassen algorithm with multiple 

compress of big integer (Fürer, 2007). 

Then the frequency interpolation number system (FNS) over the set Z of integers is 

determined based on the parameters of the DFT used for the FNS to PNS conversion and vice 

versa. For example the integer a represented in the B-ary PNS in the form of the vector 

Bnn aaa ),,,( 021
  a  or the polynomial 






1

0

)(
n

j

j
j xaxa  will be represented in the FNS by 

the vector mnn aaa ,021 ),,,(  a  (or the polynomial 





1

0

)(
n

j

j
j xaxa ), such that )(aa  F , 

where F is the n- n-th 

root of unity by module m (Z / mZ ring element) (Knuth, 1997). Each i-th coordinate of the 
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vector a is defined by the transformation 





1

0

modmod)(
n

j

ij
j

i
i mamaa , and for the vector 

a , by the transformation 




 
1

0

11 modmod)(
n

j

ij
j

i
i manmana , and then 

 




 
1

0

1 mod)(
n

i

ii Bmana , 10  nBa . 

The FCNS defines the summation, subtraction and multiplication operations 

)()()( iii bac  , )()()( iii bac   and inherits all the FNS disadvantages. It should be 

further noted that the integer vectors in the FCNS cannot have an arbitrary length n 

determined by the parameters of the DFT used ( 1mod  mn ). Also, the module m in the 

FCNS is limited to the half of the processor unit registers (for integer multiplication) and, 

pursuant to the primitive root theorem, if 128-bit (binary) integers are used, it cannot be less 

than 64 bits. Thus, an increase in the bit number in the PNS leads to a rapid growth of the 

modulus and requires additional FCNS for some orders of digits in integers. The Schönhage-

Strassen algorithm is known to calculate a cyclic convolution using two primitive roots 

1mod  mn  and 1mod2  mn , 2 , thus allowing one to reduce the dimension of the Z / 

mZ ring. For a 64-bit processor unit the maximum PNS base is determined as B = 2
16

, and 

then the module is m = 2
32

 + 1 (product of digit orders in the FNS does not exceed the number 

of processor unit registers). 

Fast DFT algorithms (FFT) providing for rapid PNS to FNS conversion and vice versa 

include algorithms based on the DFT computation through multidimensional DFT (e.g. the 

Cooley–Tukey and the Good-Thomas algorithms (Shirbhate, 2015)). 

The Fuhrer algorithm employs the representation of the source factors in the form of 

multidimensional polynomials thus defining the representation in the multidimensional 

frequency number system (MFNS). The maximum dimension of the Z / mZ rings (in the 

multidimensional FFT) and the total number of the interpolation points remain the same as in 

the ordinary FNS, and then the only advantage is the computational complexity of the MFNS 

to PNS and vice versa conversions. 

Residue class number systems 
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Fast convolution computation algorithms further include the Chinese remainder 

theorem (CRT) based ones, i.e. the Winograd algorithm for polynomials, the A. Schönhage 

algorithm for integers and the Agarwal-Cooley algorithm for convolution computation 

(Valueva, 2020). 

The CRT based fast integer multiplication algorithm has a relationship with the 

algorithms the CNS is based upon. For example, the calculation of the value of the 

polynomial a(x )mod()()( ii xxaa  , while in 

CRT-based integer algorithms any integer a < M can be restored from the points 
ii

maa mod

, with 
110 


r

mmmM  , 
im being mutually prime integers. 

Thus, the residue class number system (RNS) is determined by the product of mutually 

prime integers 
110 


r

mmmM   (RNS base), and then the integer Ma 0  is the residue 

vector Mraaa ),,,( 110  a  such that 





1

0

mod
r

i

iii
MNMaa , 

ii
mMM / , 

iii mMN mod1 , 

ii
maa mod . 

The main advantage of the RNS is its independence on the polynomial integer 

representation in the PNS. The summation/subtraction or multiplication result for two integers 

Mr
aaa ),,,(

110 
 a  and 

Mr
bbb ),,,(

110 
 b  in the RNS is the vector 

Mr
ссс ),,,(

110 
 с , 

Mс 0 , where 
iiii

mbac mod  or 
iiii

mbac mod , respectively. The integer division in the 

RNS is only implementable for a zero remainder, i.e. ab | , 
iiii mbac mod1 . Comparison is 

only possible in the RNS for equity checking between two integers, 
iii

mba mod , 

1,1,0  ri  . 

To eliminate the disadvantages of the RNS for integer division with non-zero 

remainder, MPNS with the same base ),,,(
021

mmm
rr




M  is used. There are efficient 

(including parallel) algorithms for integer conversion from RNS to MPNS as well as integer 

scaling algorithms for RNS by means of this conversion (Lyubomudrov, 2014). By analogy 

with the PNS, the maximum length of the binary representation of the integers mi in the RNS 

and MPNS should not exceed half of the number of processor unit registers for storing interim 

results in a single register. However, from the viewpoint of RNS integer representation vector 
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length reduction (aimed at reducing the number of parallel processor units required) one 

should choose as big mi as possible (e.g. 3231 22  im  for a 64-bit processor unit). 

 

2.3 Search criteria of fast cryptographic processing in a finite field 

 

We will hereinafter assume that the integers a and b in any number system are vectors 

of the same length and the operations with these integers are executed in the finite prime field 

GF(p). Then a and b are random equiprobable integers less than p. 

Cryptographic operations can be implemented either in one number system or with 

conversion to other number systems. Then the search for the most efficient cryptographic 

function implementation algorithm can be formalized as the search for the lowest weight path 

in the graph shown in Fig. 3.  

 

 

The weight of each edge of the graph in Fig 1 (z and z’ are conversions between 

number systems) can be estimated for paralleling purposes in accordance with the selected 

criteria (speed, cost etc.). Hence the search of the most efficient path requires weighing each 

 

a,b ϵ GF(p)

c

r

z'

r'

z

z'

z

z'

z

c=a+b c=ab

r=c mod p

r'=r   mod p-1

z'

z

a,b ϵ GF(p)

c

r

r'

c=a+b c=ab

r=c mod p

r'=r   mod p-1

Позиционная система 

счисления

Непозиционная система 

счисления

 
Figure 3. Graph of possible implementations of cryptographic function operations in the field 

GF(p). 

Non-Positional Number 

System 

Positional Number System 
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edge of the graph. An edge that is absent in the cryptographic function should have a zero 

weight. 

We will compare two parallel algorithms for four number systems: PNS with the base 

B = 2
32

, MPNS with the base ),,,( 021 mmm rr M , where 322im are the biggest prime 

integers, RNS with the base equal to that of the MPNS and FNS with the base B = 2
16

 of the 

related PNS and the m = 2
32

 + 1 dimension of the Z/mZ ring. 

 

2.4 Fast parallel big integer summation algorithm 

 

The summation of two big integers 
Bnn

aaa ),,,(
021




a  and 
Bnn

bbb ),,,(
021




b in the 

PNS with the base B is a digit-by-digit summation of the elements of their vector 

representation 
ii

ba  , 1,1,0  ni   followed by alignment of the result. The maximum carry 

value for the summation is unity: Bii BBBBBba )2,1(2)1()1(maxmax  . 

Then the length of the result vector of the integer c = a + b should be greater by 1 than the 

length of the vectors a and b, i.e. the result vector is Bnn ссс ),,,( 01 с . If the summation 

terms belong to the finite field GF(p), then based on the same maximum carry assumptions 

the condition 221  pB n  should be satisfied. 

The parallel alignment process (overflow carry to higher orders) for an integer vector 

in the PNS is described by the function AlignPNS(c): 

 
The maximum number of carry cycles in Eq. Erro! Fonte de referência não encontrada. is n 

(it is always n for sequential execution) if the summation result is equal or greater than B. 
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The parallel summation algorithm in the PNS can be expressed in the form of the function 

AddPNS(a,b): 

 

 
 

).

);(

1,1,0;

(),(:),(

creturn

babaс

AlignPNS

niforbac

AddPNS

iii





 (6) 

The terms Mrr aaa ),,,( 021 a  and Mrr bbb ),,,( 021 b in the MPNS with the base 

),,,(
021

mmm
rr




M  have approximately the same dimension as in the PNS (8192-bit integers mi 

< 2
32

 (biggest prime integers) require 257 and 256 registers, respectively). However, integer alignment 

takes into account the integer-order index and is described by the function AlignMPNS(c): 

 

   

 

 

 

   

 

).

;

;

1,1,0;010

1,1,0;/

1,1,0;

1,1,0;mod

1

1,1,0;010

1,1,0;/

(:)(

11

creturn

doend

ifendelsethenif

dowhile

ifendelsethenif

ccc



















riforffq

riformcq

riforqcc

riformcc

f

riforffq

riformcq

AlignMPNS

i

iii

iii

iii

i

iii













 (7) 

The parallel summation algorithm in the MPNS can be expressed in the form of the function 

AddMPNS(a,b): 

  

).);(

1,1,0;

(),(:),(

creturn

babaс

AlignMPNS

riforbac

AddMPNS

iii 



  (8) 

Parallel summation of two integers 
Mr

aaa ),,,(
110 

 a  and 
Mr

bbb ),,,(
110 

 b  in the RNS 

with the result vector 
Mr

ссс ),,,(
110 

 с  is set by the function AddRNS(a,b): 

 

  

).;

}1,1,0{;mod

(),(:),(

creturn

babac





riformbac

AddRNS

iiii   (9) 
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The product of the base elements 

110 


r
mmmM   for the summation of two integers of the 

GF(p) field should satisfy the inequality M > 2p – 2. 

In the FNS the summation is executed by analogy with the RNS, i.e., the result is the vector 

mnn ccc ,021 ),,,(  c , where mbac iii mod . Summation in the FNS is set by the function 

AddFNS(a,b): 

 

 

).;

}1,1,0{;mod

(),(:),(

creturn

babac





niformbac

AddFNS

iii   (10) 

We will now pre-estimate the speed and cost (the height and area of the parallel graph) 

for the summation operations in different number systems for the worst scenario (maximum 

number of operations in the height of the parallel graph). To this end we will make the 

calculations for the terms of the GF(p) field represented in the PNS with the base B. Two 

random integers )(, pGFba  in the PNS are two n-digit integers with the result being an n + 1 

digit integer. Then the longest (critical) path for the parallel function as per Eq. Erro! Fonte 

de referência não encontrada. includes 5n + 2 elementary computer operations, and for the 

function as per Eq. Erro! Fonte de referência não encontrada. it includes 5n + 3 elementary 

operations. The maximum number of parallel streams in the PNS is n + 1 taking into account 

that the result occupies one additional digit, and hence the cost of the function as per Eq. 

Erro! Fonte de referência não encontrada. is 385)1)(35( 2  nnnn  operations   

streams. Two similar integers )(, pGFba  in the MPNS will in the worst scenario be n + 1 

digit integers, and the result will be an n + 2 digit integer. Then the critical path for the 

function as per Eq. Erro! Fonte de referência não encontrada. is 

16185)2)(35( 2  nnnn  operations   streams. If the RNS has the same base as the 

MPNS then the number of digits in the terms remains the same (n + 1) but the base should in 

this case be chosen such that the result be not greater than the product of the base elements, 

i.e., the source integers and the result will consist of n + 2 digits. Then the critical path for the 

function as per Eq. Erro! Fonte de referência não encontrada. consists of 2 operations 

(summation and modular operation) and its cost is 42)2(2  nn  operations   streams. The 

PNS related with the FNS has the base B' = B / 2 (if B' = 2
16

 then m = 2
32

 + 1), and then the 
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number of digits in the integers in the FNS (taking into account that the result is one digit 

longer) is 2n + 1. Thus, the critical path for the function as per Eq. Erro! Fonte de referência 

não encontrada. is 2 operations and the cost is 24)12(2  nn  operations   streams. 

Summation speed and cost estimates are presented in Table 1. 

 

Table 1.  

Number of critical path operations and cost of summation for different number systems for n-

digit terms )(, pGFba  in the PNS with the base B. 

 PNS MPNS RNS FNS 

              Critical  

path, operations 
  85 n  2 2 

Cost, 

operations   streams 
385 2  nn

 

16185 2  nn  42 n  24 n  

Source: research data 

2.5 Fast parallel big integer multiplication algorithm 

 

The result of multiplication of two big integers Bnn aaa ),,,( 021 a  and 

Bnn bbb ),,,( 021 b  in the PNS is the double-length vector Bnn ссс ),,,( 02212 с  (based on 

the maximum carry for two-digit multiplication). 

A widely used PNS multiplication algorithm is “column” multiplication which is a 

linear convolution of two vectors 





1

0

n

j

jiji baс  and 120  ni , 012 nc  followed by result 

alignment. Parallel implementation of this algorithm requires execution of each of the n
2
 

parallel multiplications 
 nini

ba
/mod in a separate stream and result added to the digit position 

 ninic /mod   followed by carry in the vector 
Bnn

ссс ),,,(
02212




с  in accordance with the base B. 

This algorithm is expressed by the function MulPNS(a,b): 

     
 

).);(

1,1,0;

(),(:),(

2
/mod/mod/mod

creturn

babaс

AlignPNS

niforbacc

MulPNS

nininininini 



   (11) 

It should be specially noted that adding the result of each elementary multiplication to 

the respective digit position of the total result leads to a queue of additions. The length of the 

queue of n additions is the maximum for the digit position 1nc , which adds n operations to the 
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critical path of the function as per Eq. Erro! Fonte de referência não encontrada.. 

Furthermore, one should bear in mind the possibility of processor unit register overflow in 

case of a long queue of additions and hence reduce the allowed dimension of the base B. For 

example, a 64-bit processor unit may use the base B = 2
32

 for storing elementary 

multiplication results, and taking into account the addition of n such multiplication results, the 

maximum allowed base dimension is 










 2

log
32 2

2

n

B . 

In the MPNS with the base ),,,( 02212 mmm rr M  the multiplication of two integers 

Mrr aaa ),,,( 021 a  and Mrr bbb ),,,( 021 b  can also be described as a convolution 

followed by result alignment but taking into account the coefficient ),,,( 0212 kkk rr


K for 

the shift of one of the factors for “column” multiplication (because ji mm  for ji  ), where 

 

 







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


riri

z

z

ri

y

y

ri

x

x

i

m

mm

k
/mod

0

/

0

mod

0
. Then parallel multiplication in the MPNS is described by the function 

MulMPNS(a,b): 

 

     
 

).);(

1,1,0;

(),(:),(

2
/mod/mod/mod

creturn

babaс

AlignMPNS

riforkbacc

MulMPNS

iriririririri 



   (12) 

To ensure accurate results the coefficients ki should be stored in the form of simple 

fractions (for direct multiplication by a coefficient, accuracy is ensured by carrying to higher 

digit orders) while the numerator and the denominator may be integers exceeding the number 

of processor unit registers (e.g. if the base elements are prime integers). Obviously, Eq. Erro! 

Fonte de referência não encontrada. has an excessive computational complexity and will be 

further excluded from the comparison. 

In the RNS, multiplication is expressed by the function MulRNS(a,b): 
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 
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}1,1,0{;mod

(),(:),(

creturn

babac





riformbac

MulRNS

iiii   (13) 

In the FNS, the multiplication algorithm is designed by analogy with that for the RNS 

and is set by the function MulFNS(a,b): 

 

).;

}1,1,0{;mod

(),(:),(

creturn

babac





niformbac

MulFNS

iii   (14) 

By analogy with the summation operations, we will theoretically estimate the speed 

and cost of multiplication in different number systems for the worst scenario and the critical 

path of the functions Eq. Erro! Fonte de referência não encontrada., Erro! Fonte de 

referência não encontrada. and Erro! Fonte de referência não encontrada., given the 

representation of n-digit factors in the PNS with the base 322B  implemented on a 64-bit 

processor unit. Since the function as per Eq. Erro! Fonte de referência não encontrada. 

may cause overflow of the processor unit registers for 1nc  (due to addition of elementary 

multiplication results) the factors should be represented in the PNS with the base n
B 2log32

2




, i.e., the required number of digits for the factors is  )log32/(32 2 nnn  , and the result is a 

2n'–digit integer. Then the maximum critical parallel multiplication path in the PNS (taking 

into account carry operations) is 11n' + 3 elementary operations and the cost is 

232 311)311( nnnn   operations   streams. For the RNS the factors are n + 1 digit 

integers and the result is a 2(n + 1) digit one. Since the RNS base should be preset the factors 

and the result will be determined by the number of digits in the result. Hence the critical path 

for the function as per Eq. Erro! Fonte de referência não encontrada. is 2 and the cost is 

44)1(22  nn  operations   streams. For the FNS the base is half of B hence the factors 

are 2n-digit integers and the result is a 4n-digit one. Then the critical path for the function as 

per Eq. Erro! Fonte de referência não encontrada. is 2 operations (same as for the RNS) 

and the cost is nn 842   operations   streams. Multiplication speed and cost estimates are 

presented in Table 2. 

 Table 2 
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Number of critical path operations and cost of multiplication for different number systems for 

n-digit factors )(, pGFba  in the PNS with the base B. 

 PNS R

NS 

F

NS 

Critical path, operations 
3

)(log32

32
11

2










 n

n
 

2 2 

Cost, operations   streams 2

2

3

2 )(log32

32
3

)(log32

32
11 




















 n

n

n

n
 

44 n  n8  

Source: research data 

 

Fast parallel algorithm for big integer division with remainder  

Integer a division by p, a > p, is set by an expression like a = qp + c where a is the 

dividend, p is the divider, q is the quotient and c is the remainder, c < p. It is also stated that a 

is comparable with c by modulus of p, i.e. )(mod pca   or pac mod . 

Summation and multiplication in the finite field GF(p) are defined by the modulus of 

p. Let the summation or multiplication result of two elements of GF(p) be a, then the final 

result in the preset finite field is pac mod . 

If a is the result of the summation of two integers of GF(p), i.e. pa 20  , then the 

residue is determined by the function Rem(a, p); 

 









paa

pappa
papaRemc

0,

2,
),(:),(  (15) 

In any number system Eq. Erro! Fonte de referência não encontrada. is 

implemented via one comparison and, if necessary, one subtraction. In the PNS and MPNS 

integers are compared digit-by-digit, beginning from the highest order down to the first 

differing digits of two big integers. Comparison can be combined with subtraction for 

implementing Eq. Erro! Fonte de referência não encontrada.. Then the difference c = a – p 

is first calculated; if c > 0 then this is the result, otherwise the result is the initial integer a. 

Parallel implementation of Eq. Erro! Fonte de referência não encontrada. in PNS is set by 

the function RemPNS(a,p): 
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c

niforffc

niforcc
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c

f

f

niforpac

RemPNS


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
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 (16) 

 

Parallel implementation of Eq. Erro! Fonte de referência não encontrada. is set by the 

function RemMPNS(a,p): 
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;
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ifend
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c
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riforcc
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c

f

f
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RemMPNS






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 (17) 

 

Direct implementation of Eq. Erro! Fonte de referência não encontrada. in the FNS 

and RNS is impossible due to the absence of the comparison operation. 

For FNS one should use inverse DFT for comparison in PNS, but this conversion does 

not yield a result with negative interpolation polynomial coefficients. Then subtraction in the 

FNS is not always possible (including the case a > p): this means that the implementation of 

Eq. Erro! Fonte de referência não encontrada. in the FNS should be completely executed 

in the PNS (i.e. using Eq. Erro! Fonte de referência não encontrada.) with the utilization of 
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inverse and direct DFT. Based on the abovementioned disadvantages (dependence of FNS 

representation on PNS representation), implementation of Eq. Erro! Fonte de referência não 

encontrada. in the FNS will not be considered hereinafter. 

The RNS has a system of orthogonal bases (based on the Chinese remainder theorem) 

allowing scaling an integer with an expanded set of bases; this system allows comparing 

integers in the RNS via the MPNS. Integer representation in the RNS is invariant to 

representation in other number systems, and this property allows implementing Eq. Erro! 

Fonte de referência não encontrada. using orthogonal bases and Eq. Erro! Fonte de 

referência não encontrada. without the inverse conversion to the RNS. For example, if the 

RNS with the base 
110 


r

mmmM   is defined, then the system of orthogonal bases is the 

matrix of coefficients ][ ijwW , )1,,1,0(,  rji   where each line iw  is interpreted as the 

vector integer representation ii mMN / , ( iii mmMN mod)/( 1 ) in the MPNS with the base 

),,,(
021

mmm
rr




M . Then the parallel function algorithm for Eq. Erro! Fonte de 

referência não encontrada. in the RNS is defined by the function RemRNS(a,p,p') where a 

and p are the vector representations of the dividend and the divider in the RNS and p' is the 

vector representation of the divider in the MPNS: 
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 (18) 
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Theoretical estimation of Eq. Erro! Fonte de referência não encontrada. for the 

integer a which is a result of summation of two n-digit integers of GF(p) (in the PNS with the 

base B = 2
32

) in the number systems considered (see Eqs. Erro! Fonte de referência não 

encontrada., Erro! Fonte de referência não encontrada. and Erro! Fonte de referência 

não encontrada.) for the worst critical path scenario is presented in Table 3. 

 

Table 3 

 Number of critical path operations and cost of computing residue for summation in different 

number systems for n-digit terms )(, pGFba   in the PNS with the base B. 

 PNS MPNS RNS 

Critical path, operations 74 n

 

114 n

 

164 n  

Cost, operations   streams 7114 2  nn
 

22194 2  nn
 

6480324 23  nnn
 

Source: research data 

 

If the integer a is the result of multiplication of two integers of GF(p) one should use 

integer division with remainder. Three main methods of integer division with remainder are 

known based on Fermat’s descent, Newton’s iterations and Montgomery transformation 

(Bajard & Imbert, 2004). 

In the PNS the Fermat descent-based division is implemented in the form of the 

widespread “column” division algorithm (Knuth, 1997). It has been reported that in the 

general case Newton iteration and Montgomery transformation based PNS algorithms provide 

no advantage in computational complexity but if the divider p is known a priori the 

computational complexity can be reduced by carrying out preliminary calculations. Fermat 

descent-based integer division is set by the function DivFerma (a, p): 

 

);

;

;0,,

;

(),(:),(

creturn

doend

dowhile









ccqpqpcc

pc

ac

papaDivFermac

 (19) 

 

The main task in the implementation of Eq. Erro! Fonte de referência não 

encontrada. is the search for such components of the quotient q to provide for iteration 
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approach to the remainder c through the minimal number of iterations. The number of 

iterations depends on the factor by which the dividend is greater than the divider, and if that 

factor is large, only one iteration may be sufficient, while if the quotient is unity Eq. Erro! 

Fonte de referência não encontrada. degenerates to Eq. Erro! Fonte de referência não 

encontrada.. Newton iteration and Montgomery transformation based division is invariant to 

the ratio of the dividend and the divider. For example, the calculation of the remainder of the 

division pac mod  with the value of Mpp mod)(' 1  pre-calculated on the basis of 

Montgomery transformation is determined by the function DivMont (a, p, p'): 

 

 

 






 
 p

M

pMapa
RemppappaDivMontc ,

)mod'(
)',,(:)',,(  (20) 

The value M > p is chosen so division by it to have lower computational complexity 

than the division by p (e.g. using shift operations). Newton iteration based division requires 

calculation of the interpolated quotient and then the remainder: for M > p
2
 and the pre-

calculated value of  pMp /'  the integer division is described by the function DivNewton 

(a, p, p'): 

 

 
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







 pp

M

ap
aRemppappaDivNewtonc ,

'
)',,(:)',,(  (21) 

 

In the PNS Eq. Erro! Fonte de referência não encontrada. is implemented in the form of D. 

Knuth’s algorithm and set by the parallel function ),( pac DivFerma . 
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 (22) 

 

 

3. СOMPARATIVE ANALYSIS 

 

The asymmetric cryptographic algorithms shown in Figure 1 and Figure 2 were 

implemented using the CUDA technology in the PNS, RNS and FNS number systems with 

parallel basic operations (as considered above). The results of measuring the performance and 

cost of algorithms on the NVIDIA GeForce RTX 2070 video card are presented in Figure 4 

and Figure 5. 
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Figure 5. General point summation algorithm P1 = (x1, y1) and P2 = (x2, y2) for elliptic 

curve E(X,Y) in finite field GF(q) 
Source: research data  

 

As can be seen from the presented measurements, the cost of the algorithms is about 

the same, however, in terms of speed, interpolation number systems are obviously in the lead. 

The most optimal is the use of RNS as the fastest numbering system with low cost. 
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4. CONCLUSION 

 

Thus, the presented research is of practical interest for the implementation of 

asymmetric cryptographic algorithms based on interpolation number systems in parallel 

computing systems.  

The presented parallel basic arithmetic operations make it possible to implement 

asymmetric cryptographic algorithms within one non-positional number system without 

returning to the positional one, in contrast to the algorithms presented, for example, in (Bajard 

& Imbert, 2004) or (Salamat, 2021). 

The generalization of RNS on the example of FNS allows us to speak about the 

existence of interpolation number systems, which, in turn, makes the search for new, more 

efficient, non-positional number systems promising. 
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