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Abstract 

Objective: This article aims to solve the non-linear Black Scholes (BS) equation for 

European call options using Radial Basis Function (RBF) Multi-Quadratic (MQ) Method. 

 

Methodology / Approach: This work uses the MQ RBF method applied to the solution of 

two complex models of nonlinear BS equation for prices of European call options with 

modified volatility. Linear BS models are also solved to visualize the effects of modified 

volatility.  Additionally, an adaptive scheme is implemented in time based on the Runge-

Kutta-Fehlberg (RKF) method. 

 

Originality / Relevance: The original computational scheme of a solver containing an 

efficient integrator of the diffusional term is presented. The adaptive, accurate and coherent 

temporal integrator, chosen, was the RKF method. 

 

Main Results: The numerical results obtained, when compared with the solutions of Sevcovic 

and Zitnanská (2016) and Ankudinova (2008), allow us to state that the RBF method is 

accurate and easy to program. Adaptive methods over time proved to be efficient both in 

terms of speed (number of iterations to reach the final simulation time) and in terms of 

accuracy in relation to the results without the implementation of the method. 

 

Theoretical / methodological contributions: This paper presents an original numerical 

solver for nonlinear financial problems. Part of the solver structure was built based on two 

analytical-numerical solvers available in the literature, a modified RBF solver and an RKF 

temporal integrator. The solver performs excellently when compared to other available 

models. 

 

Keywords: Non-linear Black Scholes Equation. Radial Basis Functions. Adaptive Method. 

Option Pricing. 

 

Resumo 

Objetivo: o presente artigo tem como objetivo solucionar a equação de Black Scholes (BS) 

não linear para opções de compra europeias por meio do método de funções de base radial 

(FBR) Multiquádrica (MQ) com adaptatividade temporal.  

 

Metodologia / Abordagem: Este trabalho utiliza o método FBR MQ aplicado à solução de 

dois modelos complexos de equação não linear de BS para preços de opções de compra 

europeias com volatilidade modificada. Modelos lineares de BS também são resolvidos para 

visualizar os efeitos da volatilidade modificada. Adicionalmente, implementa-se um esquema 

adaptativo no tempo tendo por base o método de Runge-Kutta-Fehlberg (RKF). 

 

Originalidade / Relevância: Apresenta-se um esquema original computacional de um 

resolvedor que contém um integrador eficiente do termo difusivo. O integrador temporal 

adaptativo, acurado e coerente, escolhido, foi o método de RKF. 

 

Principais Resultados: Os resultados numéricos obtidos, quando comparados com a 

literatura, permitem afirmar que o método FBR é preciso e de fácil programação. Os métodos 

adaptativos no tempo mostraram-se eficientes quer em termos de rapidez (número de 
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iterações para atingir o tempo final de simulação) quanto em termos de acurácia em relação 

aos resultados sem a implementação do método.  

 

Contribuições teóricas / metodológicas: Este trabalho apresenta um solucionador numérico 

original para problemas financeiros não lineares. Parte da estrutura do solucionador foi 

construída com base em dois solucionadores analítico-numéricos disponíveis na literatura, um 

solucionador de RBF modificado e um integrador temporal de RKF. O solucionador apresenta 

desempenho excelente, quando comparado com outros modelos disponíveis. 

 

Palavras-chave: Equação de Black Scholes não linear. Funções de Base Radial. Método 

Adaptativo. Precificação de Opções. 

 

Resumen 

Objetivo: este artículo tiene como objetivo resolver la ecuación no lineal de Black Scholes 

(BS) para opciones de compra europeas utilizando el método de función de base radial (FBR) 

multi-cuadrática (MQ). 

 

Metodología / Enfoque: Este trabajo utiliza el método FBR MQ aplicado a la solución de dos 

modelos de ecuaciones BS no lineales para precios de opciones de compra europeas con 

volatilidad modificada, demostrado en los trabajos de Sevcovic y Zitnanská (2016) y 

Ankudinova (2008). También se resuelven modelos lineales de BS para visualizar los efectos 

de la volatilidad modificada. Además, se implementa un esquema adaptativo en el tiempo 

basado en el método Runge-Kutta-Fehlberg (RKF). 

 

Originalidad / Relevancia: Se presenta el esquema computacional original de un 

solucionador que contiene un integrador eficiente del término difusor. El integrador temporal 

adaptativo, preciso y coherente, elegido, fue el método RKF.   

 

Resultados principales: Los resultados numéricos obtenidos, al compararlos con las 

soluciones de Sevcovic y Zitnanská (2016) y Ankudinova (2008), nos permiten afirmar que el 

método FBR es preciso y fácil de programar. Los métodos adaptativos a lo largo del tiempo 

demostraron ser eficientes tanto en términos de velocidad (número de iteraciones para 

alcanzar el tiempo de simulación final) como en términos de precisión en relación a los 

resultados sin la implementación del método. 

 

Contribuciones / metodológicas: Este trabajo presenta un solucionador numérico original 

para problemas financieros no lineales. Parte de la estructura del solucionador se construyó 

sobre la base de dos solucionadores análonos-numéricos disponibles en la literatura, un 

solucionador RBF modificado y un integrador temporal RKF. El solucionador funciona 

excelentemente en comparación con otros modelos disponibles.  

 

Palabras clave: Ecuación no lineal de Black Scholes. Funciones de base radial. Método 

adaptativo. Precio de las opciones. 
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1. INTRODUCTION 

Derivative pricing is one of the most important processes in financial markets 

(Milovanovic, 2018). Financial derivatives are becoming increasingly popular nowadays, not 

only as instruments of hedging but also for speculative transactions (Janková, 2018). Basic 

types of derivatives include futures, options, and forwards (Wilmott, 2007).   

There are several models to predict the price of an option. The formula proposed by 

Fischer Black and Myron Scholes in 1973, known as the Black-Scholes (BS) model, is the 

most widely used one (Fall, Ndiaye & Sene, 2019).  

The basic equation of BS is a linear parabolic hyperbolic equation with stochastic and 

deterministic parameters and variables.  Improvements in the original model lead us to a set of 

partial differential equations essentially equivalent to the diffusion and convection equation 

used in engineering (Wilmott, 1998). The linear equation of BS with constant volatility was 

derived under several restrictive assumptions such as frictionless, liquid, complete markets, 

etc. (Grossinho, 2017). However, the ideal conditions that make volatility constant do not 

occur due to the effects of transaction costs, investor preferences, incomplete markets, effects 

due to the large number of traders in  the market, among others (During, 2005). 

The literature is abundant in models used to estimate volatility (Lin, Li and Wu 2018). 

Typically volatility models considers the effects of the market. These models result in strong 

nonlinear parabolic diffusion-convection BS equations (During, 2005). Many numerical 

methods have been proposed to approximate the solution of convective-diffusive equations 

added to the nonlinear term of modified volatility, from which the nonlinear BS equation 

originates. These methods include finite differences methods, finite elements, finite volumes, 

and contour elements that originate from local interpolation schemes and require the use of 

meshes. Solutions of finite differences and finite elements for the convective-diffusive 

equation present numerical problems of oscillation and damping (Amster, Averbuj  &  

Mariani,  2003; Boztosun & Charafi, 2002;  Hoffman, 1992; Lee,  Peraire  &  Zienkiewicz,  

1987; Murphy & Prenter, 1985; Tomas III &  Yalamanchili, 2001; Zienkiewicz & Taylor, 

1991; Wilmott, 1998; Wilmott,  Howison  &  Dewynne,  1995 as quoted in Santos, Souza & 

Fortes, 2009).  

Based on the above analysis it can be inferred that the market, by the large number of 

models being made available, has not yet solidified into a high confidence model. In other 

words, models are still restrictive subject to a small range of applications. Therefore, we 
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propose in this work a numerical model that allows expending the investigation range leading 

to more accurate results.  

More specifically this work aims to: 

1. Evaluate the behavior of numerical solutions of the nonlinear Black-Scholes equation 

for European call options subject to the modified volatility fun. 

2. Through multiquadric radial bass functions (RBF) (MQ). 

Through two nonlinear models of modified volatility: 

a) Variable transaction cost model proposed in the work of Sevcovic and Zitnanská 

(2016). 

b) Identity Model proposed by Barles and Sonner (1998) with numerical results 

presented in the work of Ankudinova (2008). 

3. Investigate by mesh refinement the non-linearity regions of the inflection point of the 

payoff function. 

4. Compare the results obtained from nonlinear models with linear models. 

5. Implement a simple and efficient method of temporal adaptive solution of partial 

differential equations, applied, together with the RBF technique for solving problems 

of linear and nonlinear options. 

6. Perform a sensitivity and error analysis for the methods and problems proposed in the 

above items. 

 

2. THEORETICAL FRAMEWORK 

     Nonlinear Black-Scholes Equation 

The widely accepted mathematical model for evaluating the temporal value of a V(S,t) 

option is the Black-Scholes equation. It is based on a stochastic model for the behavior of the 

asset price (S), whose solution leads to the current price V(S,0) of an option that expires at the 

end time T (Meyer, 1998). The classic form of the basic equation of Black-Scholes or BS is 

(Wilmott, 1998): 

                             
 

 
                                                         (1) 

where V, t, , S e r are, respectively, the value of the option, time, volatility, price of the asset 

(underlying asset – stochastic variable), and risk-free interest rate. 
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The asset value (S) follows a Brownian geometric movement which means that if W = 

W (t) is a standard Brownian movement, then (S) satisfies the following stochastic differential 

equation (SDE) (Wilmott, 1998): 

                                                                                            (2) 

where   represents the average rate of asset price growth. 

However, the assumption listed above does not represent reality. In this way, several 

options pricing models in which the volatility function   is no longer constant have been 

developed. The classical model should be represented as a nonlinear equation, in which both 

volatility  as the coefficient   should depend on the time t, the price of the asset S or the 

value of option V itself (Ankudinova, 2008). 

In this work, we focus in the case in which volatility depends on the second derivative 

of the price of option V(S,t)  in relation to the price of the asset S (Gama) that can be written 

as (Sevcovic & Zitnanská, 2016): 

   
 

 
 ̃      

                                                   (3) 

where  ̃      
  is product function of the asset price by Gamma (second derivative from the 

price of option V in relation to the price of the asset S). 

The main motivation to solve the nonlinear equation of BS with the volatility function 

of  ̃      
 is due to the pricing of more realistic options in which one can take into account 

the presence of transaction costs, market feedbacks, risks from unprotected portfolio and other 

effects (Duris, Tan, Lai & Sevcovic, 2015). 

The Value of V(S,t) of a European call option is obtained by solving the Equation (3) at 

0 ≤ S< ∞ and 0 ≤ t ≤ T, considering the following boundary conditions: 

                    

                                                                                                         (4) 

                          

where K is the exercise price of the option. 

It should be noted that the first condition refers to the payment function, that is, the 

value of a call option at maturity (t =T). 

 

Nonlinear Black-Scholes Equation - Variable Transaction Cost Model 

Due to the variation in the number of transactions made by several investors in the 

market, the costs of these transactions may fluctuate, since the higher the number of shares 
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that a same investor trades the less he will pay for the transactions. Sevcovic and  Zitnanská 

(2016) presented in their work a generalization of the Leland (1985) model taking into 

account in the calculation of the transaction cost the volume of transactions negotiated 

 (     ou     ).  

Considering the term     as a measure of the expected value of the transaction cost 

change per unit of time interval   , a generalization of the Black Scholes equation is obtained 

as below: 

   
 

 
                                                        (5) 

The term     obtained through the Leland equation for the constant transaction cost 

case is defined as: 

    
 

 
     |   |                                                (6) 

where    √
 

 

  

 √  
 and C0 is the constant transaction cost not dependent on the volume of 

transactions traded      ou     . 

Similarly, taking into account in the calculation of the transaction cost the volume of 

transactions traded (     ou     ), the term     is affected by a variable transaction cost 

function  ̃    dependent on the product of   and gamma (    . In this way, the     in 

Equation (6), can be rewritten as follows: 

    
 

 
√

 

 

 ̃    

  
                                                   (7) 

where     |   |√   

By replacing Equation (7) in Equation (5) a generalization of the Leland equation is 

obtained for the case of variable transaction costs. Consequently, the term  ̃      
  in 

Equation (3) can be defined as: 

 ̃      
       √

 

 
 ̃   |   |√   

        

 √  
                              (8) 

In fact, for a small volume of assets traded    , the rate of transaction costs follows a 

value   . According to Sevcovic e Zitnanská (2016), when the volume is large enough, a 

discount is applied with a transaction cost fee   ̅     lower. From the use of the integration 

by parts, it can be inferred that the modification of the value is a result of a function of 

transaction costs by parties given by: 
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 ̃         ∫  
   

       

  
 

  
 

                                       (9) 

where    e    are the intervals for part integration. 

 

Nonlinear Black-Scholes Equation - Barles and Soner Identity Model (1998) 

Barles and Soner (1998) created a variable volatility model based on the utility function 

of Hodges and Neuberger (1989), which seeks to simulate the behavior of the investor in the 

market. Therefore, for the pricing of a European type option, the modified volatility is defined 

as follows: 

 ̃        (              )                                      (10) 

    √                                                        (11)   

  
 

  
                                                         (12) 

where   is the proportional transaction cost,   represents the risk aversion factor and N is the 

number of options. The utility function      is the solution to the following nonlinear 

ordinary differential equation (ODE): 

                                   
      

 √       
                                                 (13)                            

with the following initial condition, 

                                                             (14) 

An analysis of the differential equation, Equation (13), proposed by Barles and Soner 

(1998) implies that: 

      
    

 
            

    

 
                                           (15) 

The property presented in Equation (15) allows us to treat      as identity for large 

arguments thus allowing to simplify calculations. Consequently, the term  ̃      
  in 

equation (3) can be defined as: 

 ̃      
                                                            (16) 
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3. METHODOLOGY 

Radial Base Functions Method 

The Radial Base Functions Method uses linear combinations of a base function      of 

a variable, expanded over a given scattered data center               to approximate 

an unknown function        by: 

         ∑       (  )  ∑    (‖     ‖)
 
   

 
                           (17) 

where    ‖     ‖ is the Euclidean norm and    are the coefficients to be determined.  

The most commonly used types of radial base functions are (Martin & Fornberg, 2017): 

                                    Multiquadric,  (  )  √     
                                          (18) 

                                          Gaussian,  (  )       
 

                                                (19) 

                     Polyharmonic Splines (PHS),          {
  
         

  
             

         (20) 

where   and   are shape parameters. 

The RBF methodology to obtain the numerical solution of the BS equation requires the 

discretization of equation (3) together with the volatility term given by Equations (8) and (16). 

Thus, the nonlinear Black-Scholes equation can be discretized as: 

       

  
        

 

 
 ̃      

                                        (21) 

Replacing the approach to        given by Equation (17) added to the volatility model 

given by Equation (8), one can write equation (21) as follows: 

     

  
     

 

 
  [   √

 

 
 ̃ (  |

      

   
    | √  )

   .
      

   
    /

 √  
]         

   
     

   
     

  
                                                                       (22) 

Multiplying both sides of the Equation (22) by        we have: 

     

  
       {

 

 
  [   √

 

 
 ̃ (  |

      

   
    | √  )

   .
      

   
    /

 √  
]     

   
     

   
 

  
          }                                                  (23) 
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Similarly, replacing the approach to        given by Equation (17) added to the 

volatility model given by Equation (16), one can write equation (21) as: 

     

  
     

 

 
  [(             

      

   
    )]   

      

   
        

     

  
      

                                                                   (24) 

Multiplying both sides of the Equation (24) by        we have: 

     

  
       ,

 

 
  *                    

   
     +     

   
       

 

  
          -    

(25)                                    

 

Equations (23) and (25) generate a system of nonlinear equations, which can be solved 

to obtain the unknown coefficients      through the use of Runge-Kutta- Fehlberg's adaptive 

method (RKF). From this point on, they can be transformed into        through Equation 

(17). 

 

 Runge-Kutta-Fehlberg adaptive method 

According to Santos et al. (2009) most practical problems involve complex nonlinear 

problems, for which there are no analytical solutions. Therefore, these problems should be 

solved by means of numerical methods. Of particular importance for this work, Runge-Kutta-

Fehlberg adaptive method (RKF) allows to obtain numerical approximations for the exact 

solution, within pre-user-specified errors, with automatically generated time intervals. 

Consider an ordinary differential equation (ODE) in the following format: 

  

  
       ,                                                     (26) 

where t is the independent variable and y is the dependent variable; subscript 0 refers to 

initial values.  

The RKF adaptive method involves calculating two different order estimates. Thus, 

equation (26) can be solved by means of a fifth order method and error estimation, as the 

difference in the estimates of solutions obtained from fifth and fourth orders (Chapra & 

Canale, 2010): 

 

Fifth Order Estimate:  

        (
  

   
   

    

     
   

     

     
   

 

  
   

 

  
  )                  (27) 

http://creativecommons.org/licenses/by-nc/3.0/br/
http://creativecommons.org/licenses/by-nc/3.0/br/
http://creativecommons.org/licenses/by-nc/3.0/br/
http://creativecommons.org/licenses/by-nc/3.0/br/


 

 
 

 Revista Gestão & Tecnologia, Pedro Leopoldo, v. 20, n.4, p. 60-83, out./dez.2020        70 

  

 

Vinicius Magalhães  Pinto Marques, Gisele Tessari Santos, Mauri Fortes 

 
 

 

Fourth Order Estimate: 

        (
  

   
   

    

    
   

    

    
   

  

 
)                           (28) 

in that, 

            

       (   
 

 
      

 

 
  ) 

       (   
 

 
      

 

  
   

 

  
  ) 

       (   
  

  
      

    

    
   

    

    
   

    

    
  )                     (29) 

       (         
   

   
       

    

   
   

   

    
  ) 

       (   
  

 
    

 

  
       

    

    
   

    

    
   

  

  
  ) 

where    is the time step. 

 

The difference between the values in the fourth and fifth order RKF methods for 

determining the relative error can be obtained by the following expression (Chapra & Canale, 

2010): 

      
  

   
 

   

    
   

    

     
   

  

  
 

 

  
                                  (30) 

The time step is adjusted by referencing a predetermined truncation error value   . If 

the difference in values obtained by the fourth and fifth order RKF methods are above the 

desired error parameter, the time step is consequently decreased by one factor  . Likewise, if 

the error value found is below the established parameter, the time step should be increased by 

the same factor. This process seeks to considerably improve computational processing time. 

 

           
       

 
                                                   (31) 
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4. PRESENTATION AND DISCUSSION OF RESULTS 

Numerical results for the nonlinear model proposed by Sevcovic and Zitnanská (2016) 

 

This item presents the numerical results obtained for European Call options using the 

MQ RBF method for the nonlinear BS model with variable transaction costs as proposed by 

Sevcovic and Zitnanská (2016). Two curves obtained for the option price are also presented 

using the Leland (1985) Model of constant transaction cost, the first with lower volatility 

value(      and the second with higher volatility value       . 

For simulation and analysis, similar data to those used in the work of Sevcovic and 

Zitnanská (2016) were used. Thus, the results obtained were based on the following input 

data: 

 Initial Transaction Cost:         

 Final Transaction Cost:   
̅̅ ̅                        

 Proportional Transaction Cost:       

 Exchange ranges of traded assets:         e        

 Asset exercise price:      

 Volatility of the object asset:       

 Risk-neutral interest rate:         

 Deadline for expiration of the option:     

 Interval between two consecutive rearrangements in the portfolio:    
 

   
 

In order to compare the results obtained in this study, the following values were taken 

as a reference according to the results obtained by Sevcovic and Zitnanská (2016) for the 

nonlinear model. 

 Reference solution for nonlinear model in                         

 Reference solution for nonlinear model in                           

 Reference solution for nonlinear model in                           

 Reference solution for nonlinear model in                           

 Reference solution for nonlinear model in                          

For two linear models with volatility      and      the results for the option price 

(     and     ) compared to the analytical solution. The analytical solution for the linear BS 

equation can be found in (During, 2005). 
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After tests performed with the Sevcovic and Zitnanská (2016) model the best results 

were obtained with the following simulation parameters to determine the value of the option 

numerically: initial    = 1x10
-3

,    = 1x10
-8

, form factor,  , of MQ RBF equal to 0.0009,  

number of points N = 216,  S1 = 0.28, S2 = 0.28/1.1 for S   [24,25], and maximum value 

of S (underlying asset) equal to 60. It is noted that to solve this model, the use of a greater 

number of points (S2 = 0.28/1.1) in the range of S   [24,25] since with this strategy, there 

was a decrease in numerical errors at the inflection point of the initial condition (pay off 

function)  of the problems       e     . 

Figure 1 shows the graph referring to the variable transaction cost function  ̃    

depending on the volume of assets traded     obtained through equation (9). Note that as the 

number of assets traded increases there is a reduction in the transaction cost amount within a 

range of          e   ̅        as proposed by Sevcovic and  Zitnanská (2016). 

 

 

Figure 1. Variable transaction cost  ̃    depending on the volume of assets traded    . 

 

The numerical results found for the option price obtained through  the nonlinear BS 

model with variable transaction cost,      , and through the linear model with constant 

transaction cost,      (with higher volatility),     
    .    ̅√

 

 

 

 √  
/, and      (with 

lower volatility),     
    .    √

 

 

 

 √  
/, in    , can be seen in Figure 2. 
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Figure 2 - Numerical results for the option price     ,      e      in t = 0 compared to the 

payoff function. 

 

You can see in Figure 2 that, in time t = 0, the value of the      approaches the curve 

of      with lower volatility parameter. As noted by Sevcovic and Zitnanská (2016), at the 

beginning of the contract, the investor does not need many rearrangements in his portfolio to 

hedge his position. In this way, the cost per transaction is equal to   . As time approaches the 

exercise in t = T, it becomes necessary to perform frequent rearrangements in the portfolio, 

increasing the traded assets. This increase carries a discounted transaction cost for the investor 

in the amount of  ̅ .  

The mean quadratic deviation of the numerical solution obtained with the nonlinear 

model        using the MQ RBF method, it was calculated by comparing with the five values 

presented in the work of Sevcovic and  Zitnanská (2016), in S = 20, 23, 25, 28 and 30. The 

average quadratic error for      e      was calculated based on values obtained through  

analytical solution: 

                                                        

 √
 

 
   ∑                                    

                      (33)     

being N the number of points considered for error calculation.  

It can be observed, in Table 1, the errors calculated with and without the increase of 

points in the region of the inflection point of the initial condition of the problems     ,      

and     . 
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Table 1  

Mean Quadratic Deviation / error calculated for numerical values of     ,      and      with 

and without increasing points in the inflection region of the initial condition. 

S 

     

Mean Quadratic Error 

    

     

Mean Quadratic 

Deviation     

     

Mean Quadratic 

Error     

S = 0.28 5.28x10
-4

 0.125 3.55x10
-4

 

S1 = 0.28 

S2=0.28/1.1 

 

4.41x10
-4

 0.125 3.21x10
-4

 

According to the results presented in Table 1, there is an excellent approximation of the 

value of the option obtained by the MQ RBF method for the linear model, since the mean 

quadratic error of     e       was of 4.41 x 10
-4

 e 3.21 x 10
-4

 respectively. It is also possible 

to observe that with the increase in the number of points in the region of inflection point S 

[24,25] there was a decrease in the error calculated for      and      (reduction of 16.5% 

and 9.6% respectively), however, in the case of      there was no change in deviation. 

The mean quadratic deviation obtained for the nonlinear BS equation with variable 

transaction costs compared to the result found in the work of Sevcovic and Zitnanská (2016) 

was 0.125. It is observed in Table 2 the effect of the variation on the number of N points in 

the mean quadratic deviation when using the MQ RBF method. 

 

Table 2 

Effect of variation on the number of N points in the Mean Quadratic Deviation     when 

using the MQ RBF method. 

Value of S 

Option Value 

obtained in the 

work of Sevcovic 

and Zitnanská 

(2016) 

Option Value 

VNLS with N = 

216 

Option Value 

VNLS with N = 

40 

Option Value 

VNLS with N = 

30 

Option Value 

VNLS with N = 

24 

20 0.127 0.154 0.136 0.128 0.113 

23 0.844 0.923 0.886 0.85 0.791 

25 1.748 1.861 1.818 1.799 1.683 

27 3.695 3.852 3.826 3.811 3.812 

30 5.321 5.505 5.495 5.481 5.439 

Mean Quadratic 

Deviation     
0 0.125 0.104 0.091 0.083 
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There is a greater approximation of the results obtained in this work in relation to the 

results of the work presented by Sevcovic and Zitnanská (2016) when there is a reduction in 

the number of points in the MQ RBF method. However, it is worth noting that, as the 

nonlinear BS model with variable transaction costs does not have an analytical solution, the 

mean quadratic deviation was calculated based on only five reference values – values 

presented in the work of Sevcovic  and  Zitnanská (2016). 

 

Numerical Results for the Nonlinear Identity Model proposed by Barles and Soner 

(1998) 

This item presents the numerical results obtained for the nonlinear BS model with 

volatility model Identity proposed by Barles and Sonner (1998) through the MQ RBF. The 

results were compared to those obtained in the work of Ankudinova (2008). A linear model 

with constant volatility     is also presented, enabling a better visualization of the difference 

found in the option price when considering in the calculation the modified volatility function. 

For simulation and analysis, similar data used in the work of Ankudinova (2008) were 

used. Thus, the results obtained were based on the following input data:  

 Risk-free parameter:        

 Asset exercise price:       

 Volatility of the object asset:       

 Risk-neutral interest rate:       

 Deadline for expiration of the option:     

In order to compare the results obtained in this work with the results obtained by 

Ankudinova (2008), the following value was taken as reference: 

 Reference solution for the nonlinear BS model in                     

For the linear BS model with constant volatility the results for the option price (    

compared to the analytical solution. After tests with the model the best results were obtained 

with the following simulation parameters to determine the value of the option numerically: 

initial    = 1x10
-3

,    = 1x10
-8

, form factor,  , of MQ RBF equal to 8.2, number of points N = 

119,  S = 1.7, and maximum value of S (underlying asset) equal to 200. The use of a larger 

number of points has also been tested (S2 = 1.7/1.1) in the range of S   [99,101] to check 

whether there would be a minimization of numerical errors at the inflection point of the initial 

condition (payoff function) of the problems        e   . The numerical results found for the 
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option price from the nonlinear BS model       associated with the Identity volatility model 

proposed by Barles and Soner (1998) in     can be seen in Figure 3. The price of the option 

obtained from the solution of the linear equation of BS with constant volatility (     ) is 

represented by   . A small difference in the price values of the option obtained by the two 

models is noted due to the effect of modified volatility incorporated in the nonlinear model. 

The payment function can also be seen in Figure 3. 

 
Figure 3 - Numerical results for the option price       e    in     compared to the 

payment function. 

 
Figura 4 – Difference between option prices       and    depending on the value of the 

underlying asset (S). 

Because it was only presented in the work of Ankudinova (2008) the result of the 

option price for the nonlinear model Identity       at one point (S=95), it was only possible 

to compare the results obtained in this study for this point. Thus, we chose to calculate the 

relative numerical deviation for the result found as follows:  

                                                            

 
                                                             

                               
                          (34) 
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Table 3 shows the relative deviation referring to the numerical value of       and the 

mean quadratic error for the values of    with and without increasing points in the region of 

the inflection point of the initial condition. 

 

Table 3 

Deviation / error calculated for the numerical values of       and    with and without 

increasing points in the inflection region of the initial condition. 

S 
   

Mean Quadratic Error     

      

Relative Numerical 

Deviation             

S = 1.7 6.36x10
-4

 0.022 

S1 = 1.7 

S2 = 1.7/1.1 

6.62x10
-4

 0.022 

According to the results presented in Table 3, there is an excellent approximation of the 

value of the option obtained by the MQ RBF method for the linear model, since the mean 

quadratic error was 6.36x10
-4

. It is also possible to observe that with the increase of points in 

the region of the inflection point S   [99,101] there is no considerable change in the error 

calculated for    (increase of 4.1% in error) and no change in the relative deviation of      . 

The relative deviation obtained for the nonlinear BS equation with Identity volatility 

model compared with the result found in the Ankudinova (2008) work was 0.022. It is 

observed in Table 4 the effect of the variation in the number of points N in the relative 

deviation to the use of the Method of MQ RBF. 

 

Table 4 

The effect of the variation in the number of points N in the relative deviation             to the 

use of the Method of MQ RBF. 

Value of S 

Option Value 

obtained in work 

of Ankudinova 

(2008) 

Option Value 

VNLBS with        

N = 119 

Option Value 

VNLBS with     

N = 40 

Option Value 

VNLBS with     

N = 20 

Option Value 

VNLBS with     

N = 13 

95 10 10.221 10.214 10.047 10.08 

Relative 

Deviation 

            

- 0.022 0.021 4.70x10
-3

 8.01x10
-3
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A greater approximation of the results obtained in this work with the results of the  

work presented by Ankudinova (2008) is observed when there is a decrease in the number of 

points used in the MQ RBF method. It is noteworthy that since the nonlinear BS model with 

identity volatility model does not have an analytical solution, the relative deviation was 

calculated based on only one reference value – a value obtained in the work presented by 

Ankudinova (2008). 

 

Analysis of the efficiency of the adaptive method for the solution of non-linear and linear 

Black-Scholes 

 

Table 5 and  6 show the  total number of iterations (time steps) required to achieve the 

final simulation time (T=1), with and without the use of an RKF temporal adaptive method 

for nonlinear BS configurations for European call options presented in the works of  Sevcovic  

and  Zitnanská (2016) and Ankudinova (2008), respectively. Additionally, the deviations 

obtained through the proposed methods and the results presented by the authors mentioned 

above are shown, considering the initial time step (initial Δt) equal to 0.001 and truncation 

error (     set to adaptive method, equal to 1x10
-8

. 

 

Table 5 

Total number of iterations required to achieve the final simulation time (T=1) and mean 

quadratic deviation with and without the use of adaptive method - Sevcovic and Zitnanská 

model (2016). 

Factor F 

(Equation 32) 

Number of Iterations Quadratic Mean Deviation 

Non-Adaptative 

Method 
Adaptative Method 

Non-Adaptative 

Method 
Adaptative Method 

1.0001 

1000 

954 

0.125 

0.125 

1.0003 875 0.125 

1.0005 812 0.126 

 

From the results presented in Table 5, it is noted that using the adaptive method RKF 

with 812 iterations is obtained an average quadratic deviation close to the method without 

adaptability in time with 1000 iterations. Therefore, there is a gain in the number of iterations 

without considerable loss of accuracy in the results when using the numerical method with 

temporal adaptability. The reduction in the number of iterations consequently lead to the 

decrease in computational time for solution of the nonlinear model, which is extremely 

important in practice. 
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Table 5 also shows that there is no variation in deviation with the application of the 

adaptive method in time RKF applied to the nonlinear BS model proposed by Sevcovic  and  

Zitnanská (2016),  when the F factor was varied to update the time step between 1.0003 and 1. 

Table 6  

Total number of iterations required to achieve the final simulation time (T=1) and relative 

deviation with and without the use of adaptive method - Barles and Soner Model (1998) 

presented in the work of Ankudinova (2008). 

Factor F 

(Equation 32) 

Number of Iterations Relative Deviation 

Non-Adaptative 

Method 
Adaptative Method 

Non-Adaptative 

Method 
Adaptative Method 

1.0001 

1000 

954 

0.022 

0.023 

1.0002 912 0.022 

1.0004 842 0.023 

From the results presented in Table 6 it is possible to observe that the use of the 

adaptive method with 842 iterations obtained a relative deviation close to the method without 

adaptability in time with 1000 iterations. Therefore, there is a gain in the number of iterations 

without considerable loss of accuracy in the results when using the numerical method with 

temporal adaptability. Again, it is noteworthy that the reduction in the number of iterations 

consequently lead to the decrease in computational time for the solution of the nonlinear 

model. 

Table 6 also shows that good results were achieved with the adaptive method in time 

applied to the nonlinear BS model proposed by Barles and Soner (1998) and presented in the 

Ankudinova (2008) work, when the F factor was maintained to update the time step lower 

than 1.0004. For F values above 1.0004 the results diverged. 

Table 7 shows the total number of iterations (time steps) required to achieve the final 

simulation time (T=1) with and without the use of an RKF temporal adaptive method for 

solution of the linear BS model for European purchasing options     ,      and   , 

respectively. Additionally, the errors obtained through the proposed methods and the 

analytical solution of the linear BS model are shown considering the initial time step (Δt 

initial) equal to 0.001 and truncation error (   , set to the adaptive method, equal to 1x10
-8

. 
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Table 7 

Total number of iterations required to achieve the final simulation time (T=1) and mean 

quadratic error with and without the use of adaptive method to               .  

Linear BS 

models 

Factor F 

(Equation 32) 

Number of Iterations Quadratic Mean Deviation 

Non-Adaptative 

Method 

Adaptative 

Method 

Non-Adaptative 

Method 

Adaptative 

Method 

Vmin 

1.0001 

1000 

954 

4.41x10
-4

 

5.08x10
-4

 

1.0003 875 4.50x10
-4

 

1.0005 812 5.68x10
-4

 

 1.0001 

1000 

954 

3.21x10
-4

 

7.70x10
-4

 

Vmax 1.0003 875 4.60x10
-4

 

 1.0005 812 1.02x10
-3

 

VL 

1.0001 

1000 

954 

6.36x10
-4

 

6.39x10
-3

 

1.0002 912 2.42x10
-3

 

1.0004 842 6.28x10
-3

 

 

According to the results of Table 7, it is observed that for      there was an absolute 

variation between the highest and lowest error obtained from 1.27 x10
-4

 with the number of 

iterations in time ranging from 812 to 1000 and factor F between 1 and 1.0005. For     , the 

absolute variation of the error was 6.99 x 10
-4

 with the number of iterations in time ranging 

from 812 to 1000 and factor F between 1 and 1.0005, as it was found for the     . Finally, for 

  , the absolute variation of the error was 5.75x10
-3

 with the number of iterations in time 

ranging from 842 to 1000 and factor F between 1 and 1.0004. It is noteworthy that for F 

values above the upper limit of the described intervals there was a considerable increase in the 

numerical errors calculated. It is concluded that, through the adaptive method, good results 

are obtained in the linear model with reduction in the number of iterations and, consequently, 

in computational time. 

Figure 5 shows the variation of the time step at each iteration due to the implementation 

of temporal adaptability (RKF method) in the solution of nonlinear and linear BS problems. 

Figure 5 shows the results for the smallest number of iterations obtained in the solution of 

problems, as shown in Tables 5, 6 and 7. 
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Figure 5 - Time step variation at each iteration due to the implementation of temporal 

adaptability. 

 

It is observed that the time step is corrected to a higher value with each iteration, since 

the difference of the results obtained through Runge-Kutta- Fehlberg method of fourth and 

fifth order (Equation 30) for     ,     ,     ,    and       are always smaller than the 

truncation error    = 1x10
-8

 pre-established. The increase in the time step makes it possible to 

obtain the final solution of the problem with a smaller number of iterations, which generates, 

consequently, a gain in computational time that is extremely important for those who work in 

the financial market. 

 

5. CONCLUSIONS 

The main conclusions of this work are: 

 Numerical results allow us to affirm that the methods of MQ RBF, adaptive and non-

adaptive in time, led to accurate and fast results, when applied to linear problems, as 

well as to problems of the nonlinear type with modified volatility. In the nonlinear 

models analyzed in this work - Sevcovic and Zitnanská (2016) and Ankudinova 

(2008) - there was a reduction in the deviations calculated when a lower number of 

points was used in the numerical solution obtained by  the MQ RBF method. 

 As for the increase in the number of points in the discontinuity region of the payment 

function, there was an improvement in the accuracy of the results calculated for      

and     . In the other cases, there was no significant improvement in the results that 

justified its use. 
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 Regarding to the increase in the Values of Factor F of temporal adaptability used in 

the adaptive method in time for nonlinear models, there was a reduction in the number 

of iterations and,  consequently,  in computational time, keeping the numerical 

deviations practically unchanged (variation of 0,001 in deviation to      e      ). In 

the case of linear models,  with the increase of factor F in the adaptive method, there 

was a reduction in the number of iteration and, consequently,  in computational time, 

keeping the numerical errors in the order of 1x10
-3

 and 1x10
-4

. 

 For a truncation error of    = 1x10
-8

,  there was a greater variation in the time step 

through the adaptive method for the solution of     ,      and      if compared to 

the solution of      ,   . 

It is noteworthy that there is no analytical solution for the nonlinear models presented 

in this work, and, therefore, the deviation were calculated based on only one reference value - 

obtained in the work of Ankudinova (2008) for the nonlinear model of Barles and Soner 

(1998)  - and  based on five values presented in the work of Sevcovic and Zitnanská (2016) 

for the nonlinear model with variable transaction cost. 
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